Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_3_a0, author = {Kulinowski, Karol and Wo{\l}oszyn, Maciej and Radecka, Marta and Spisak, Bart{\l}omiej J.}, title = {The effect of elastic and inelastic scattering on electronic transport in open systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {427--437}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a0/} }
TY - JOUR AU - Kulinowski, Karol AU - Wołoszyn, Maciej AU - Radecka, Marta AU - Spisak, Bartłomiej J. TI - The effect of elastic and inelastic scattering on electronic transport in open systems JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 427 EP - 437 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a0/ LA - en ID - IJAMCS_2019_29_3_a0 ER -
%0 Journal Article %A Kulinowski, Karol %A Wołoszyn, Maciej %A Radecka, Marta %A Spisak, Bartłomiej J. %T The effect of elastic and inelastic scattering on electronic transport in open systems %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 427-437 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a0/ %G en %F IJAMCS_2019_29_3_a0
Kulinowski, Karol; Wołoszyn, Maciej; Radecka, Marta; Spisak, Bartłomiej J. The effect of elastic and inelastic scattering on electronic transport in open systems. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 3, pp. 427-437. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a0/
[1] Bak, T., Nowotny, J. and Nowotny, M.K. (2006). Defect disorder of titanium dioxide, Journal of Physical Chemistry B 110(43): 21560–21567.
[2] Ben Abdallah, N., Degond, P. and Genieys, S. (1996). An energy-transport model for semiconductors derived from the Boltzmann equation, Journal of Statistical Physics 84(1): 205–231.
[3] Cabrera, R., Bondar, D.I., Jacobs, K. and Rabitz, H.A. (2015). Efficient method to generate time evolution of the Wigner function for open quantum systems, Physical Review A 92(4): 042122.
[4] Caldeira, A.O. and Leggett, A.J. (1981). Influence of dissipation on quantum tunneling in macroscopic systems, Physical Review Letters 46(4): 211–214.
[5] Chatterjee, K., Roadcap, J.R. and Singh, S. (2014). A new Green’s function Monte Carlo algorithm for the solution of the two-dimensional nonlinear Poisson–Boltzmann equation: Application to the modeling of the communication breakdown problem in space vehicles during re-entry, Journal of Computational Physics 276: 479–485.
[6] Chruściński, D. and Pascazio, S. (2017). A brief history of the GKLS equation, Open Systems and Information Dynamics 24(3): 1740001.
[7] Costolanski, A.S. and Kelley, C.T. (2010). Efficient solution of the Wigner–Poisson equations for modeling resonant tunneling diodes, IEEE Transactions on Nanotechnology 9(6): 708–715.
[8] Danielewicz, P. (1984). Quantum theory of nonequilibrium processes I, Annals of Physics 152(2): 239–304.
[9] Di Ventra, M. (2008). Electrical Transport in Nanoscale Systems, Cambridge University Press, Cambridge.
[10] Ferry, D.K., Goodnick, S.M. and Bird, J. (2009). Transport in Nanostructures, Cambridge University Press, Cambridge.
[11] Frensley, W.R. (1990). Boundary conditions for open quantum systems driven far from equilibrium, Reviews of Modern Physics 62(3): 745–791.
[12] Fujita, S. (1966). Introduction to Non-Equilibrium Quantum Statistical Mechanics, W.B. Saunders Company, Philadelphia, PA.
[13] Gómez, E.A., Thirumuruganandham, S.P. and Santana, A. (2014). Split-operator technique for propagating phase space functions: Exploring chaotic, dissipative and relativistic dynamics, Computer Physics Communications 185(1): 136–143.
[14] Hong, S. and Jang, J. (2018). Transient simulation of semiconductor devices using a deterministic Boltzmann equation solver, IEEE Journal of the Electron Devices Society 6: 156–163.
[15] Hong, S.-M., Pham, A.-T. and Jungemann, C. (2011). Deterministic Solvers for the Boltzmann Transport Equation, Springer Science Business Media, Vienna.
[16] Jacoboni, C., Bertoni, A., Bordone, P. and Brunetti, R. (2001). Wigner-function formulation for quantum transport in semiconductors: Theory and Monte Carlo approach, Mathematics and Computers in Simulation 55(1–3): 67–78.
[17] Jacoboni, C., Poli, P. and Rota, L. (1988). A new Monte Carlo technique for the solution of the Boltzmann transport equation, Solid-State Electronics 31(3): 523–526.
[18] Jonasson, O. and Knezevic, I. (2015). Dissipative transport in superlattices within the Wigner function formalism, Journal of Computational Electronics 14(4): 879–887.
[19] Kim, K.-Y. (2007). A discrete formulation of the Wigner transport equation, Journal of Applied Physics 102(11): 113705.
[20] Kim, K.-Y. and Kim, S. (2015). Effect of uncertainty principle on the Wigner function-based simulation of quantum transport, Solid-State Electronics 111: 22–26.
[21] Kohn, W. and Luttinger, J.M. (1957). Quantum theory of electrical transport phenomena, Physical Review 108(3): 590–611.
[22] Kulczycki, P., Kacprzyk, J., Kóczy, L., Mesiar, R. and Wisniewski, R. (2019). Information Technology, Systems Research, and Computational Physics, Springer, Cham, (in press).
[23] Kulczycki, P., Kowalski, P. and Łukasik, S. (Eds) (2018). Contemporary Computational Science, AGH-UST Press, Cracow, p. 4.
[24] Leaf, B. (1968). Weyl transformation and the classical limit of quantum mechanics, Journal of Mathematical Physics 9(1): 65–72.
[25] Lee, H.-W. (1995). Theory and application of the quantum phase-space distribution functions, Physics Reports 259(3): 147–211.
[26] Lifshits, I.M., Gredeskul, S.A. and Pastur, L.A. (1987). Introduction to the Theory of Disordered Systems, John Wiley and Sons, Inc., New York, NY.
[27] Luttinger, J.M. and Kohn, W. (1958). Quantum theory of electrical transport phenomena II, Physical Review 109(6): 1892–1909.
[28] Mahan, G.D. (2000). Many Particle Physics, Kluwer Academic Plenum Publishers, New York, NY.
[29] Muscato, O. and Wagner, W. (2016). A class of stochastic algorithms for the Wigner equation, SIAM Journal on Scientific Computing 38(3): A1483–A1507.
[30] Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C. and Ferry, D.K. (2004). Unified particle approach to Wigner–Boltzmann transport in small semiconductor devices, Physical Review B 70(11): 115319.
[31] Nedjalkov, M., Selberherr, S., Ferry, D., Vasileska, D., Dollfus, P., Querlioz, D., Dimov, I. and Schwaha, P. (2013). Physical scales in theWigner–Boltzmann equation, Annals of Physics 328: 220–237.
[32] Nedjalkov, M. and Vitanov, P. (1989). Iteration approach for solving the Boltzmann equation with the Monte Carlo method, Solid-State Electronics 32(10): 893–896.
[33] Nowotny, J., Radecka, M. and Rekas, M. (1997). Semiconducting properties of undoped TiO2, Journal of Physics and Chemistry of Solids 58(6): 927–937.
[34] Querlioz, D. and Dollfus, P. (2010). The Wigner Monte-Carlo Method for Nanoelectronic Devices: A Particle Description of Quantum Transport and Decoherence, ISTE Ltd. and John Wiley and Sons, Inc., New York, NY.
[35] Rammer, J. (2007). Quantum Field Theory of Non-Equilibrium States, Cambridge University Press, Cambridge.
[36] Schieve, W.C. and Horwitz, L.P. (2009). Quantum Statistical Mechanics, Cambridge University Press, Cambridge.
[37] Schleich, W.P. (2001). Quantum Optics in Phase Space, John Wiley and Sons, Inc., New York, NY.
[38] Schulz, D. and Mahmood, A. (2016). Approximation of a phase space operator for the numerical solution of the Wigner equation, IEEE Journal of Quantum Electronics 52(2): 1–9.
[39] Sellier, J., Amoroso, S., Nedjalkov, M., Selberherr, S., Asenov, A. and Dimov, I. (2014). Electron dynamics in nanoscale transistors by means of Wigner and Boltzmann approaches, Physica A: Statistical Mechanics and Its Applications 398: 194–198.
[40] Sellier, J. and Dimov, I. (2014). The Wigner–Boltzmann Monte Carlo method applied to electron transport in the presence of a single dopant, Computer Physics Communications 185(10): 2427–2435.
[41] Spisak, B.J., Wołoszyn, M. and Szydłowski, D. (2015). Dynamical localisation of conduction electrons in one-dimensional disordered systems, Journal of Computational Electronics 14(4): 916–921.
[42] Stashans, A., Lunell, S. and Grimes, R.W. (1996). Theoretical study of perfect and defective TiO2 crystals, Journal of Physics and Chemistry of Solids 57(9): 1293–1301.
[43] Tatarskii, V.I. (1983). The Wigner representation of quantum mechanics, Soviet Physics Uspekhi 26(4): 311–327.
[44] Ter Haar, D. (1961). Theory and applications of the density matrix, Reports on Progress in Physics 24(1): 304–362.
[45] Thomann, A. and Borz, A. (2017). Stability and accuracy of a pseudospectral scheme for the Wigner function equation, Numerical Methods for Partial Differential Equations 33(1): 62–87.
[46] Wigner, E. (1932). On the quantum correction for thermodynamic equilibrium, Physical Review 40(5): 749–759.
[47] Zurek, W.H. (2003). Decoherence, einselection, and the quantum origins of the classical, Reviews of Modern Physics 75(3): 715–775.