Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_2_a8, author = {Coll, Carmen and S\'anchez, Elena}, title = {Parameter identification and estimation for stage-structured population models}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {327--336}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a8/} }
TY - JOUR AU - Coll, Carmen AU - Sánchez, Elena TI - Parameter identification and estimation for stage-structured population models JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 327 EP - 336 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a8/ LA - en ID - IJAMCS_2019_29_2_a8 ER -
%0 Journal Article %A Coll, Carmen %A Sánchez, Elena %T Parameter identification and estimation for stage-structured population models %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 327-336 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a8/ %G en %F IJAMCS_2019_29_2_a8
Coll, Carmen; Sánchez, Elena. Parameter identification and estimation for stage-structured population models. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 2, pp. 327-336. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a8/
[1] Baliarsingh, P. and Dutta, S. (2015). On an explicit formula for inverse of triangular matrices, Journal of the Egyptian Mathematical Society 23(1): 297–302.
[2] Berman, A. and Plemmons, R. (1994). Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA.
[3] Boyadjiev, C. and Dimitrova, E. (2005). An iterative method for model parameter identification, Computers and Chemical Engineering 29(1): 941–948.
[4] Cantó, B., Coll, C. and Sánchez, E. (2014). On stability and reachability of perturbed positive systems, Advances in Difference Equations 296(1): 1–11.
[5] Cao, H. and Zhou, Y. (2012). The discrete age-structured SEIT model with application to tuberculosis transmission in China, Mathematical and Computer Modelling 55(3–4): 385–395.
[6] Carnia, E., Sylviani, S., Wirmas, M. and Supriatna, A. (2015). Modeling the killer whale Orcinus orca via the Lefkovitch matrix, 3rd International Conference on Chemical, Agricultural and Medical Sciences (CAMS-2015), Singapore, pp. 18–21.
[7] Caswell, H. (2001). Matrix Population Models: Construction, Analysis and Interpretation, Sinauer, Sunderland, MA.
[8] Chou, I. and Voit, E. (2013). Recent developments in parameter estimation and structure identification of biochemical and genomic systems, Mathematical Biosciences 219: 57–83.
[9] De La Sen, M. and Quesada, A. (2003). Some equilibrium, stability, instability and ocillatory results for an extended discrete epidemic model with evolution memory, Advances in Difference Equations 2013: 234.
[10] Dion, J.M., Commault, C. and van der Woude, J. (2003). Generic properties and control of linear structured systems: A survey, Automatica 39: 1125–1144.
[11] Emmert, H. and Allen, L. (2004). Population persistence and extinction in a discrete-time, stage-structured epidemic model, Journal of Difference Equations and Applications 10(13–15): 1177–1199.
[12] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London.
[13] Kajin, M., Almeida, P., Vieira, M. and Cerqueira, R. (2012). The state of the art of population projection models: From the Leslie matrix to evolutionary demography, Oecologia Australis 16(3): 13–22.
[14] Lefkovitch, L. (1965). The study of population growth in organisms grouped by stages, Biometrika 21(1): 1–18.
[15] Leslie, P.H. (1948). Some further notes on the use of matrices in population mathematics, Biometrika 35(3–4): 213–245.
[16] Li, C. and Schneider, H. (2002). Applications of Perron–Frobenius theory to population dynamics, Journal Mathematical Biology 44(5): 450–462.
[17] Li, X. and Wang, W. (2006). A discrete epidemic model with stage structure, Chaos Solitons and Fractals 26(3): 947–958.
[18] Ljung, L. and Soderstrom, T. (1983). Theory and Practice of Recursive Identification, MIT Press, Cambridge, MA.
[19] Verdière, N., Denis-Vidal, L., Joly-Blanchard, G. and Domurado, D. (2005). Identifiability and estimation of pharmacokinetic parameters for the ligands of the macrophage mannose receptor, International Journal Applied Mathematics and Computer Science 15(4): 517–526.