Parameter identification and estimation for stage-structured population models
International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 2, pp. 327-336.

Voir la notice de l'article provenant de la source Library of Science

A stage-structured population model with unknown parameters is considered. Our purpose is to study the identifiability of the model and to develop a parameter estimation procedure. First, we analyze whether the parameter vector can or cannot uniquely be determined with the knowledge of the input-output behavior of the model. Second, we analyze how the information in the experimental data is translated into the parameters of the model. Furthermore, we propose a process to improve the recursive values of the parameters when successive observation data are considered. The structure of the state matrix leads to an analysis of the inverse of a sum of rank-one matrices.
Keywords: system identification, parameter estimation, dynamic population, discrete time system, rank-one matrix
Mots-clés : identyfikacja systemu, estymacja parametru, dynamika populacji, system czasu dyskretnego
@article{IJAMCS_2019_29_2_a8,
     author = {Coll, Carmen and S\'anchez, Elena},
     title = {Parameter identification and estimation for stage-structured population models},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {327--336},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a8/}
}
TY  - JOUR
AU  - Coll, Carmen
AU  - Sánchez, Elena
TI  - Parameter identification and estimation for stage-structured population models
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2019
SP  - 327
EP  - 336
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a8/
LA  - en
ID  - IJAMCS_2019_29_2_a8
ER  - 
%0 Journal Article
%A Coll, Carmen
%A Sánchez, Elena
%T Parameter identification and estimation for stage-structured population models
%J International Journal of Applied Mathematics and Computer Science
%D 2019
%P 327-336
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a8/
%G en
%F IJAMCS_2019_29_2_a8
Coll, Carmen; Sánchez, Elena. Parameter identification and estimation for stage-structured population models. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 2, pp. 327-336. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a8/

[1] Baliarsingh, P. and Dutta, S. (2015). On an explicit formula for inverse of triangular matrices, Journal of the Egyptian Mathematical Society 23(1): 297–302.

[2] Berman, A. and Plemmons, R. (1994). Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA.

[3] Boyadjiev, C. and Dimitrova, E. (2005). An iterative method for model parameter identification, Computers and Chemical Engineering 29(1): 941–948.

[4] Cantó, B., Coll, C. and Sánchez, E. (2014). On stability and reachability of perturbed positive systems, Advances in Difference Equations 296(1): 1–11.

[5] Cao, H. and Zhou, Y. (2012). The discrete age-structured SEIT model with application to tuberculosis transmission in China, Mathematical and Computer Modelling 55(3–4): 385–395.

[6] Carnia, E., Sylviani, S., Wirmas, M. and Supriatna, A. (2015). Modeling the killer whale Orcinus orca via the Lefkovitch matrix, 3rd International Conference on Chemical, Agricultural and Medical Sciences (CAMS-2015), Singapore, pp. 18–21.

[7] Caswell, H. (2001). Matrix Population Models: Construction, Analysis and Interpretation, Sinauer, Sunderland, MA.

[8] Chou, I. and Voit, E. (2013). Recent developments in parameter estimation and structure identification of biochemical and genomic systems, Mathematical Biosciences 219: 57–83.

[9] De La Sen, M. and Quesada, A. (2003). Some equilibrium, stability, instability and ocillatory results for an extended discrete epidemic model with evolution memory, Advances in Difference Equations 2013: 234.

[10] Dion, J.M., Commault, C. and van der Woude, J. (2003). Generic properties and control of linear structured systems: A survey, Automatica 39: 1125–1144.

[11] Emmert, H. and Allen, L. (2004). Population persistence and extinction in a discrete-time, stage-structured epidemic model, Journal of Difference Equations and Applications 10(13–15): 1177–1199.

[12] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London.

[13] Kajin, M., Almeida, P., Vieira, M. and Cerqueira, R. (2012). The state of the art of population projection models: From the Leslie matrix to evolutionary demography, Oecologia Australis 16(3): 13–22.

[14] Lefkovitch, L. (1965). The study of population growth in organisms grouped by stages, Biometrika 21(1): 1–18.

[15] Leslie, P.H. (1948). Some further notes on the use of matrices in population mathematics, Biometrika 35(3–4): 213–245.

[16] Li, C. and Schneider, H. (2002). Applications of Perron–Frobenius theory to population dynamics, Journal Mathematical Biology 44(5): 450–462.

[17] Li, X. and Wang, W. (2006). A discrete epidemic model with stage structure, Chaos Solitons and Fractals 26(3): 947–958.

[18] Ljung, L. and Soderstrom, T. (1983). Theory and Practice of Recursive Identification, MIT Press, Cambridge, MA.

[19] Verdière, N., Denis-Vidal, L., Joly-Blanchard, G. and Domurado, D. (2005). Identifiability and estimation of pharmacokinetic parameters for the ligands of the macrophage mannose receptor, International Journal Applied Mathematics and Computer Science 15(4): 517–526.