Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_2_a5, author = {Wasilewski, Maciej and Pisarski, Dominik and Konowrocki, Robert and Bajer, Czes{\l}aw I.}, title = {A new efficient adaptive control of torsional vibrations induced by switched nonlinear disturbances}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {285--303}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a5/} }
TY - JOUR AU - Wasilewski, Maciej AU - Pisarski, Dominik AU - Konowrocki, Robert AU - Bajer, Czesław I. TI - A new efficient adaptive control of torsional vibrations induced by switched nonlinear disturbances JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 285 EP - 303 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a5/ LA - en ID - IJAMCS_2019_29_2_a5 ER -
%0 Journal Article %A Wasilewski, Maciej %A Pisarski, Dominik %A Konowrocki, Robert %A Bajer, Czesław I. %T A new efficient adaptive control of torsional vibrations induced by switched nonlinear disturbances %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 285-303 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a5/ %G en %F IJAMCS_2019_29_2_a5
Wasilewski, Maciej; Pisarski, Dominik; Konowrocki, Robert; Bajer, Czesław I. A new efficient adaptive control of torsional vibrations induced by switched nonlinear disturbances. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 2, pp. 285-303. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a5/
[1] Alin, A. (2010). Multicollinearity, Wiley Interdisciplinary Reviews: Computational Statistics 2(3): 370–374, DOI: 10.1002/wics.84.
[2] Bailey, J.R. and Remmert, S.M. (2010). Managing drilling vibrations through BHA design optimization, SPE Drilling Completion 25(4): 458–471, DOI: 10.2118/139426-PA.
[3] Bajer, C.I., Pisarski, D., Szmidt, T. and Dyniewicz, B. (2017). Intelligent damping layer under a plate subjected to a pair of masses moving in opposite directions, Journal of Sound and Vibration 394: 333–347, DOI: 10.1016/j.jsv.2017.01.046.
[4] Christoforou, A.P. and Yigit, A.S. (2003). Fully coupled vibrations of actively controlled drillstrings, Journal of Sound and Vibration 267(5): 1029–1045, DOI: 10.1016/S0022-460X(03)00359-6.
[5] Davis, J.E., Smyth, G.F., Bolivar, N. and Pastusek, P.E. (2012). Eliminating stick-slip by managing bit depth of cut and minimizing variable torque in the drillstring, IADC/SPE Drilling Conference and Exhibition, San Diego, CA, USA, pp. 402–410, DOI: 10.2118/151133-MS.
[6] Farrar, D.E. and Glauber, R.R. (1967). Multicollinearity in regression analysis: The problem revisited, The Review of Economics and Statistics 49(1): 92–107, DOI: 10.2307/1937887.
[7] Fear, M.J. and Abbassian, F. (1994). Experience in the detection and suppression of torsional vibration from mud logging data, European Petroleum Conference, London, UK, pp. 433–448, DOI: 10.2118/28908-MS.
[8] Hernandez-Suarez, R., Puebla, H., Aguilar-Lopez, R. and Hernandez-Martinez, E. (2009). An integral high-order sliding mode control approach for stick-slip suppression in oil drillstrings, Petroleum Science and Technology 27(8): 788–800, DOI: 10.1080/10916460802455483.
[9] Hillsley, K.L. and Yurkovich, S. (1991). Vibration control of a two-link flexible robot arm, 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, Vol. 3, pp. 212–216, DOI: 10.1109/ROBOT.1991.131941.
[10] Jansen, J.D. and van den Steen, L. (1995). Active damping of self-excited torsional vibrations in oil well drillstrings, Journal of Sound and Vibration 179(4): 647–668, DOI: 10.1006/jsvi.1995.0042.
[11] Kar, I.N., Miyakura, T. and Seto, K. (2000a). Bending and torsional vibration control of a flexible plate structure using H∞-based robust control law, IEEE Transactions on Control Systems Technology 8(3): 545–553, DOI: 10.1109/87.845884.
[12] Kar, I.N., Seto, K. and Doi, F. (2000b). Multimode vibration control of a flexible structure using H∞-based robust control, IEEE/ASME Transactions on Mechatronics 5(1): 23–31, DOI: 10.1109/3516.828586.
[13] Kreuzer, E. and Steidl, M. (2012). Controlling torsional vibrations of drill strings via decomposition of traveling waves, Archive of Applied Mechanics 82(4): 515–531, DOI: 10.1007/s00419-011-0570-8.
[14] Kucuk, I., Yildirim, K., Sadek, I. and Adali, S. (2013). Active control of forced vibrations in a beam via Maximum principle, 2013 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), Hammamet, Tunisia, pp. 1–4, DOI: 10.1109/ICMSAO.2013.6552558.
[15] Li, X., Agarwal, R.K. and Shue, S.-P. S.-P. (1994). Optimal control and H∞ filter for control of Timoshenko beam vibrations using piezoelectric material, Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, USA, Vol. 2, pp. 1566–1571, DOI: 10.1109/CDC.1998.758513.
[16] Michajłow, M., Jankowski, Ł., Szolc, T. and Konowrocki, R. (2017). Semi-active reduction of vibrations in the mechanical system driven by an electric motor, Optimal Control Applications and Methods 38(6): 2–8, DOI: 10.1002/oca.2297.
[17] Mihajlović, N., van Veggel, A.A., van de Wouw, N. and Nijmeijer, H. (2004). Analysis of friction-induced limit cycling in an experimental drill-string system, Journal of Dynamic Systems, Measurement, and Control 126(4): 709–720, DOI: 10.1115/1.1850535.
[18] Mohamed, Z., Chee, A.K., Hashim, A.W.I.M., Tokhi, M.O., Amin, S.H.M. and Mamat, R. (2006). Techniques for vibration control of a flexible robot manipulator, Robotica 24(4): 499–511, DOI: 10.1017/S0263574705002511.
[19] Monteiro, H.L.S. and Trindade, M.A. (2017). Performance analysis of proportional-integral feedback control for the reduction of stick-slip-induced torsional vibrations in oil well drillstrings, Journal of Sound and Vibration 398: 28–38, DOI: 10.1016/j.jsv.2017.03.013.
[20] Orlowska-Kowalska, T., Kaminski, M. and Szabat, K. (2010). Implementation of a sliding-mode controller with an integral function and fuzzy gain value for the electrical drive with an elastic joint, IEEE Transactions on Industrial Electronics 57(4): 1309–1317, DOI: 10.1109/TIE.2009.2030823.
[21] Pisarski, D. and Bajer, C.I. (2010). Semi-active control of 1D continuum vibrations under a travelling load, Journal of Sound and Vibration 329(2): 140–149, DOI: 10.1016/j.jsv.2009.09.006.
[22] Pisarski, D. and Canudas-de-Wit, C. (2016). Nash game-based distributed control design for balancing traffic density over freeway networks, IEEE Transactions on Control of Network Systems 3(2): 149–161, DOI: 10.1109/TCNS.2015.2428332.
[23] Pisarski, D. and Myśliński, A. (2017). Online adaptive algorithm for optimal control of structures subjected to travelling loads, Optimal Control Applications and Methods 38(6): 1168–1186, DOI: 10.1002/oca.2321.
[24] Priesner, R. and Jakubek, S. (2014). Mechanical impedance control of rotatory test beds, IEEE Transactions on Industrial Electronics 61(11): 6264–6274, DOI: 10.1109/TIE.2014.2308159.
[25] Serrarens, A.F.A., Van De Molengraft, M.J.G., Kok, J.J. and Van Den Steen, L. (1998). h∞ control for suppressing stick-slip in oil well drillstrings, IEEE Control Systems Magazine 18(2): 19–30, DOI: 10.1109/37.664652.
[26] Singhose, W. (2009). Command shaping for flexible systems: A review of the first 50 years, International Journal of Precision Engineering and Manufacturing 10(4): 153–168, DOI: 10.1007/s12541-009-0084-2.
[27] Symans, M.D. and Constantinou, M.C. (1999). Semi-active control systems for seismic protection of structures: a state-of-the-art review, Engineering Structures 21(6): 469–487, DOI: 10.1016/S0141-0296(97)00225-3.
[28] Szabat, K., Tran-Van, T. and Kaminski, M. (2015). A modified fuzzy Luenberger observer for a two-mass drive system, IEEE Transactions on Industrial Informatics 11(2): 531–539, DOI: 10.1109/TII.2014.2327912.
[29] Tzes, A. and Yurkovich, S. (1993). An adaptive input shaping control scheme for vibration suppression in slewing flexible structures, IEEE Transactions on Control Systems Technology 1(2): 114–121, DOI: 10.1109/87.238404.
[30] van de Vrande, B.L., van Campen, D.H. and de Kraker, A. (1999). An approximate analysis of dry-friction-induced stick-slip vibrations by a smoothing procedure, Nonlinear Dynamics 19(2): 159–171, DOI: 10.1023/A:1008306327781.
[31] Wang, S., Ren, X. and Na, J. (2016). Adaptive dynamic surface control based on fuzzy disturbance observer for drive system with elastic coupling, Journal of the Franklin Institute 353(8): 1899–1919, DOI: 10.1016/j.jfranklin.2016.03.006.
[32] Young, K. (1998). A polar coordinate based sliding mode design for vibration control, IEEE International Workshop on Variable Structure Systems, VSS’96, Tokyo, Japan, Vol. 8, pp. 181–186, DOI: 10.1109/VSS.1996.578606.
[33] Zhu, X., Tang, L. and Yang, Q. (2015). A literature review of approaches for stick-slip vibration suppression in oilwell drillstring, Advances in Mechanical Engineering 6: 1–17, DOI: 10.1155/2014/967952.