Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_2_a11, author = {Ruiz, Diego and Finke, Jorge}, title = {Lyapunov-based anomaly detection in preferential attachment networks}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {363--373}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a11/} }
TY - JOUR AU - Ruiz, Diego AU - Finke, Jorge TI - Lyapunov-based anomaly detection in preferential attachment networks JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 363 EP - 373 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a11/ LA - en ID - IJAMCS_2019_29_2_a11 ER -
%0 Journal Article %A Ruiz, Diego %A Finke, Jorge %T Lyapunov-based anomaly detection in preferential attachment networks %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 363-373 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a11/ %G en %F IJAMCS_2019_29_2_a11
Ruiz, Diego; Finke, Jorge. Lyapunov-based anomaly detection in preferential attachment networks. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 2, pp. 363-373. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a11/
[1] Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks, Science 286(5439): 509–512.
[2] Barabási, A.-L. and Pósfai, M. (2016). Network Science, Cambridge University Press, Cambridge.
[3] Bianconi, G. and Barabási, A. L. (2001). Competition and Multiscaling in evolving networks, Europhysics Letters 54(4): 436–442.
[4] Burgess, K. and Passino, K. (1995). Stability analysis of load balancing systems, International Journal of Control 61(2): 357–393.
[5] Caldarelli, G., Capocci, A., De Los Rios, P. and Muñoz, M.A. (2002). Scale-free networks from varying vertex intrinsic fitness, Physical Review Letters 89(25): 258702.
[6] Chandola, V., Banerjee, A. and Kumar, V. (2009). Anomaly detection: A survey, ACM Computing Surveys 41(3): 15:1–15:58.
[7] Chen, Q. and Shi, D. (2004). The modeling of scale-free networks, Physica A: Statistical Mechanics and Its Applications 335(1): 240–248.
[8] Choromanski, K., Matuszak, M. and Miekisz, J. (2013). Scale-free graph with preferential attachment and evolving internal vertex structure, Journal of Statistical Physics 151(6): 1175–1183.
[9] Dorogovtsev, S.N., Mendes, J.F.F. and Samukhin, A.N. (2000). Structure of growing networks with preferential linking, Physical Review Letters 85(21): 4633–4636.
[10] Gogoi, P., Bhattacharyya, D., Borah, B. and Kalita, J.K. (2011). A survey of outlier detection methods in network anomaly identification, The Computer Journal 54(4): 570–588.
[11] Hirose, S., Yamanishi, K., Nakata, T. and Fujimaki, R. (2009). Network anomaly detection based on eigen equation compression, Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, pp. 1185–1194.
[12] Host-Madsen, A. and Zhang, J. (2018). Coding of graphs with application to graph anomaly detection, 2018 IEEE International Symposium on Information Theory (ISIT), Vail, CO, USA, pp. 1829–1833.
[13] Jackson, M.O. and Rogers, B.W. (2007). Meeting strangers and friends of friends: How random are social networks?, American Economic Review 97(3): 890–915.
[14] Khalil, H. (2001). Nonlinear Systems, 3rd Edn., Pearson, Upper Saddle River, NJ.
[15] Koutra, D., Shah, N., Vogelstein, J.T., Gallagher, B. and Faloutsos, C. (2016). DELTACON: Principled massive-graph similarity function with attribution, ACM Transactions on Knowledge Discovery Data 10(3): 28:1–28:43.
[16] Kudĕlka, M., Zehnalová, Š., Horák, Z., Krömer, P. and Snášel, V. (2015). Local dependency in networks, International Journal of Applied Mathematics and Computer Science 25(2): 281–293, DOI: 10.1515/amcs-2015-0022.
[17] Lee, C.-Y. (2006). Correlations among centrality measures in complex networks, arXiv: 0605220.
[18] Moriano, P. and Finke, J. (2012). Power-law weighted networks from local attachments, Europhysics Letters 99(1): 18002.
[19] Ranshous, S., Shen, S., Koutra, D., Harenberg, S., Faloutsos, C. and Samatova, N.F. (2015). Anomaly detection in dynamic networks: A survey, WIREs Computational Statistics 7(3): 223–247.
[20] Ruiz, D. and Finke, J. (2013). Invalidation of dynamic network models, Proceedings of the American Control Conference, Washington, DC, USA, pp. 138–143.
[21] Savage, D., Zhang, X., Yu, X., Chou, P. and Wang, Q. (2014). Anomaly detection in online social networks, Social Networks 39(C): 62–70.
[22] Segarra, S. and Ribeiro, A. (2016). Stability and continuity of centrality measures in weighted graphs, IEEE Transactions on Signal Processing 64(3): 543–555.
[23] Shao, Z.-G., Zou, X.-W., Tan, Z.-J. and Jin, Z.-Z. (2006). Growing networks with mixed attachment mechanisms, Journal of Physics A: Mathematical and General 39(9): 2035.
[24] Shoubridge, P., Kraetzl, M., Wallis,W.D. and Bunke, H. (2002). Detection of abnormal change in a time series of graphs, Journal of Interconnection Networks 3(01n02): 85–101.
[25] Tong, J., Hou, Z., Zhang, Z. and Kong, X. (2009). Degree correlations in the group preferential model, Journal of Physics A: Mathematical and Theoretical 42(27): 275002.
[26] Valente, T.W., Coronges, K., Lakon, C. and Costenbader, E. (2008). How correlated are network centrality measures?, Connections 28(1): 16–26.
[27] Yu, R., Qiu, H.,Wen, Z., Lin, C.-Y. and Liu, Y. (2016). A survey on social media anomaly detection, SIGKDD Explorations 18(1): 1–14.