Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_2_a1, author = {Podolskiy, Vladimir and Jindal, Anshul and Gerndt, Michael}, title = {Multilayered autoscaling performance evaluation: {Can} virtual machines and containers co-scale?}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {227--244}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a1/} }
TY - JOUR AU - Podolskiy, Vladimir AU - Jindal, Anshul AU - Gerndt, Michael TI - Multilayered autoscaling performance evaluation: Can virtual machines and containers co-scale? JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 227 EP - 244 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a1/ LA - en ID - IJAMCS_2019_29_2_a1 ER -
%0 Journal Article %A Podolskiy, Vladimir %A Jindal, Anshul %A Gerndt, Michael %T Multilayered autoscaling performance evaluation: Can virtual machines and containers co-scale? %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 227-244 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a1/ %G en %F IJAMCS_2019_29_2_a1
Podolskiy, Vladimir; Jindal, Anshul; Gerndt, Michael. Multilayered autoscaling performance evaluation: Can virtual machines and containers co-scale?. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 2, pp. 227-244. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a1/
[1] Abedi, A. and Brecht, T. (2017). Conducting repeatable experiments in highly variable cloud computing environments, Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, ICPE’17, L’Aquila, Italy, pp. 287–292.
[2] Al-Dhuraibi, Y., Paraiso, F., Djarallah, N. and Merle, P. (2017). Autonomic vertical elasticity of docker containers with elasticdocker, 2017 IEEE 10th International Conference on Cloud Computing (CLOUD), Honolulu, HI, USA, pp. 472–479.
[3] Bauer, A., Herbst, N. and Kounev, S. (2017). Design and evaluation of a proactive, application-aware auto-scaler: Tutorial paper, Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, ICPE’17, L’Aquila, Italy, pp. 425–428.
[4] Bondi, A.B. (2000). Characteristics of scalability and their impact on performance, Proceedings of the 2nd International Workshop on Software and Performance, WOSP’00, Ottawa, Canada, pp. 195–203.
[5] Evangelidis, A., Parker, D. and Bahsoon, R. (2017). Performance modelling and verification of cloud-based auto-scaling policies, Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid’17, Madrid, Spain, pp. 355–364.
[6] Guo, Y., Stolyar, A. and Walid, A. (2018). Online VM auto-scaling algorithms for application hosting in a cloud, IEEE Transactions on Cloud Computing, pp. 1–1, (early access), https://ieeexplore.ieee.org/document/8351912.
[7] Herbst, N.R., Kounev, S. and Reussner, R. (2013). Elasticity in cloud computing: What it is, and what it is not, Proceedings of the 10th International Conference on Autonomic Computing (ICAC 13), San Jose, CA, USA , pp. 23–27.
[8] Hwang, K., Bai, X., Shi, Y., Li, M., Chen, W.G. and Wu, Y. (2016). Cloud performance modeling with benchmark evaluation of elastic scaling strategies, IEEE Transactions on Parallel and Distributed Systems 27(1): 130–143.
[9] Ilyushkin, A., Ali-Eldin, A., Herbst, N., Papadopoulos, A.V., Ghit, B., Epema, D. and Iosup, A. (2017). An experimental performance evaluation of autoscaling policies for complex workflows, Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, ICPE’17, L’Aquila, Italy, pp. 75–86.
[10] Jakobik, A., Grzonka, D. and Kolodziej, J. (2017). Security supportive energy aware scheduling and scaling for cloud environments, European Conference on Modelling and Simulation, ECMS 2017, Budapest, Hungary, pp. 583–590.
[11] Jindal, A., Podolskiy, V. and Gerndt, M. (2017). Multilayered cloud applications autoscaling performance estimation, 2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2), Kanazawa, Japan, pp. 24–31.
[12] Versluis, L. and Neacsu, A.I. (2017). A trace-based performance study of autoscaling workloads of workflows in datacenters, Technical Report 1711.08993v1, Vrije Universiteit Amsterdam, Amsterdam.
[13] Liu, Y., Rameshan, N., Monte, E., Vlassov, V. and Navarro, L. (2015). Prorenata: Proactive and reactive tuning to scale a distributed storage system, 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Shenzen, China, pp. 453–464.
[14] Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L. and Pallickara, S. (2018). Serverless computing: An investigation of factors influencing microservice performance, 2018 IEEE International Conference on Cloud Engineering (IC2E), Orlando, FL, USA, pp. 159–169.
[15] Moore, L.R., Bean, K. and Ellahi, T. (2013). Transforming reactive auto-scaling into proactive auto-scaling, Proceedings of the 3rd International Workshop on Cloud Data and Platforms, CloudDP’13, Prague, Czech Republic, pp. 7–12.
[16] Nikravesh, A.Y., Ajila, S.A. and Lung, C.-H. (2015). Towards an autonomic auto-scaling prediction system for cloud resource provisioning, Proceedings of the 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS’15, Florence, Italy, pp. 35–45.
[17] Papadopoulos, A.V., Ali-Eldin, A., Arzen, K.-E., Tordsson, J. and Elmroth, E. (2016). PEAS: A performance evaluation framework for auto-scaling strategies in cloud applications, ACM Transactions on Modeling and Performance Evaluation of Computing Systems 1(4): 15:1–15:31.
[18] Roy, N., Dubey, A. and Gokhale, A. (2011). Efficient autoscaling in the cloud using predictive models for workload forecasting, 2011 IEEE 4th International Conference on Cloud Computing, Washington, DC, USA, pp. 500–507.
[19] Sotomayor, B., Montero, R.S., Llorente, I.M. and Foster, I. (2009a). Resource leasing and the art of suspending virtual machines, Proceedings of the 2009 11th IEEE International Conference on High Performance Computing and Communications, HPCC’09, Seoul, South Korea, pp. 59–68.
[20] Sotomayor, B., Montero, R.S., Llorente, I.M. and Foster, I. (2009b). Virtual infrastructure management in private and hybrid clouds, IEEE Internet Computing 13(5): 14–22.