Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_2_a0, author = {Chang, Ben-Jye and Hwang, Ren-Hung and Tsai, Yueh-Lin and Yu, Bo-Han and Liang, Ying-Hsin}, title = {Cooperative adaptive driving for platooning autonomous self driving based on edge computing}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {213--225}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a0/} }
TY - JOUR AU - Chang, Ben-Jye AU - Hwang, Ren-Hung AU - Tsai, Yueh-Lin AU - Yu, Bo-Han AU - Liang, Ying-Hsin TI - Cooperative adaptive driving for platooning autonomous self driving based on edge computing JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 213 EP - 225 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a0/ LA - en ID - IJAMCS_2019_29_2_a0 ER -
%0 Journal Article %A Chang, Ben-Jye %A Hwang, Ren-Hung %A Tsai, Yueh-Lin %A Yu, Bo-Han %A Liang, Ying-Hsin %T Cooperative adaptive driving for platooning autonomous self driving based on edge computing %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 213-225 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a0/ %G en %F IJAMCS_2019_29_2_a0
Chang, Ben-Jye; Hwang, Ren-Hung; Tsai, Yueh-Lin; Yu, Bo-Han; Liang, Ying-Hsin. Cooperative adaptive driving for platooning autonomous self driving based on edge computing. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 2, pp. 213-225. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_2_a0/
[1] 3GPP (2019). Study on NR Vehicle-to-Everything (V2X), 3GPP Specification 38.885.
[2] Abuelela, M. and Olariu, S. (2010). Taking VANET to the clouds, Proceedings of the International Conference on Advances in Mobile Computing and Multimedia, Paris, France, pp. 6–13.
[3] Asadi, B. and Vahidi, A. (2011). Predictive cruise control: Utilizing upcoming traffic signal information for improving fuel economy and reducing trip time, IEEE Transactions on Control Systems Technology 19(3): 707–714.
[4] Brännström, M., Sandblom, F. and Hammarstrand, L. (2013). A probabilistic framework for decision-making in collision avoidance systems, IEEE Transactions on Intelligent Transportation Systems 14(2): 637–648.
[5] Burke, M. and Williams, J. (2012). Cooperative ITS regulatory policy issues, Discussion paper, Australia National Transport Commission, pp. 1–77.
[6] Chang, B.-J., Tsai, Y.-L. and Liang, Y.-H. (2017). Platoon-based cooperative adaptive cruise control for achieving active safe driving through mobile vehicular cloud computing, Wireless Personal Communications 97(4): 5455–5481.
[7] Chen, S., Hu, J., Shi, Y. and Zhao, L. (2016). LTE-V: A TD-LTE-based v2x solution for future vehicular network, IEEE Internet of Things Journal 3(6): 997–1005.
[8] Desjardinsand, C. and Chaib-draa, B. (2011). Cooperative adaptive cruise control: A reinforcement learning approach, IEEE Transactions on Intelligent Transportation Systems 12(4): 1248–1260.
[9] Dinh, T.Q., Tang, J., La, Q.D. and Quek, T.Q.S. (2017). Offloading in mobile edge computing: Task allocation and computational frequency scaling, IEEE Transactions on Communications 65(8): 3571–3584.
[10] Falcone, P., Ali, M. and Sj¨oberg, J. (2011). Predictive threat assessment via reachability analysis and set invariance theory, IEEE Transactions on Intelligent Transportation Systems 12(4): 1352–1361.
[11] Geroliminis, N. and Skabardonis, A. (2011). Identification and analysis of queue spillovers in city street networks, IEEE Transactions on Intelligent Transportation Systems 12(3): 1107–1115.
[12] Gomes, A.S., Sousa, B., Palm, D.V., Fonseca, A., Zhao, Z., Monteiro, E., Braun, T., Simoes, P. and Cordeiro, L. (2017). Edge caching with mobility prediction in virtualized LTE mobile networks, Future Generation Computer Systems 70(1): 148–162.
[13] Helbing, D. (2001). Traffic and related self-driven many-particle systems, Reviews of Modern Physics 73(4): 1067–1141.
[14] Huang, C.-L., Fallah, Y., Sengupta, R. and Krishnan, H. (2010). Adaptive intervehicle communication control for cooperative safety systems, IEEE Network 24(1): 6–13.
[15] Hwang, R.-H., Chang, B.-J., Tsai, Y.-L. and Liang, Y.-H. (2017). Mobile edge computing-based vehicular cloud of cooperative adaptive driving for platooning autonomous self driving, Proceedings of IEEE SC2 2017, Kanazawa, Japan, pp. 33–39.
[16] IEEE (2005). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment: Medium access control (MAC) quality of service enhancements, Technical report, IEEE Std. 802.11e, IEEE, Piscataway, NJ.
[17] IEEE (2011). IEEE standard for information technology-telecommunication and information exchange between systems-local and metropolitan area networks-specific requirements, Technical report, IEEE Std. 802.11p, IEEE, Piscataway, NJ.
[18] IEEE (2013). IEEE trial-use standard for wireless access in vehicular environments (wave)—multi-channel operation, Technical report, IEEE Std. P1609.4, IEEE, Piscataway, NJ.
[19] ITS (2018). Intelligent transportation systems (ITS), US Department of Transportation, Washington, DC, http://www.its.dot.gov/.
[20] Jansson, J. and Gustafsson, F. (2008). A framework and automotive application of collision avoidance decision making, Automatica 44(9): 2347–2351.
[21] Kuhne, R. and Michalopoulos, P. (1997). Continuum flow models, in N.H. Gartner et al. (Eds.), Traffic Flow Theory: A State of the Art Report—Revised Monograph on Traffic Flow Theory, Oak Ridge National Laboratory, Oak Ridge, TN.
[22] Lorenz, E. (1963). Deterministic nonperiodic flow, Journal of the Atmospheric Sciences 20(2): 130–141.
[23] Maag, C., Mühlbacher, D., Mark, C. and Krüger, H.-P. (2012). Studying effects of advanced driver assistance systems (ADAS) on individual and group level using multi-driver simulation, IEEE Intelligent Transportation Systems Magazine 4(3): 45–54.
[24] MicroSim (2018). Microsimulation of road traffic flow, http: //www.traffic-simulation.de/.
[25] Milanés, V., Alonso, J., Bouraouiand, L. and Ploeg, J. (2011a). Cooperative maneuvering in close environments among cybercars and dual-mode cars, IEEE Transactions on Intelligent Transportation Systems 12(1): 15–24.
[26] Milanés, V., Godoy, J., Villagra, J. and Perez, J. (2011b). Automated on-ramp merging system for congested traffic situations, IEEE Transactions on Intelligent Transportation Systems 12(2): 500–508.
[27] Mitropoulos, G.K., Karanasiou, I.S., Hinsberger, A., Aguado-Agelet, F., Wieker, H., Hilt, H.-J., Mammarand, S. and Noecker, G. (2010). Wireless local danger warning: Cooperative foresighted driving using intervehicle communication, IEEE Transactions on Intelligent Transportation Systems 11(3): 539–553.
[28] MOTC (2018). Ministry of Transportation and Communications (MOTC), Taipei, http://www.iot.gov.tw/.
[29] Mousannif, H., Khalil, I. and Moatassime, H.A. (2011). Cooperation as a service in VANETs, Journal of Universal Computer Science 17(8): 1202–1208.
[30] Özturk, S. and Mišić, J. (2011). On non-saturation regime in IEEE 802.11p based VANET with mobile nodes, Proceedings of IEEE PIMRC, Toronto, Canada, pp. 740–744.
[31] Papadimitratos, P., La Fortelle, A., Evenssen, K., Brignolo, R. and Cosenza, S. (2009). Vehicular communication systems: Enabling technologies, applications, and future outlook on intelligent transportation, IEEE Communications Magazine 47(11): 84–95.
[32] Pauwelussen, J. and Feenstra, P.J. (2010). Driver behavior analysis during ACC activation and deactivation in a real traffic environment, IEEE Transactions on Intelligent Transportation Systems 11(2): 329–338.
[33] Satria, D., Park, D. and Jo, M. (2017). Recovery for overloaded mobile edge computing, Future Generation Computer Systems 70(1): 138–147.
[34] Schakel, W., Arem, B. and Netten, B. (2010). Effects of cooperative adaptive cruise control on traffic flow stability, Proceedings of IEEE Conference on Intelligent Transportation Systems, ITSC 2016, Rio de Janeiro, Brazil, pp. 759–764.
[35] Somda, F. and Cormerais, H. (2011). Auto-adaptive and string stable strategy for intelligent cruise control, IET Intelligent Transport Systems 5(3): 168–174.
[36] Stevenson, R. (2011). A drivers sixth sense, IEEE Spectrum 48(10): 50–55.
[37] Tacq, J. (2010). The normal distribution and its applications, in E. Baker et al. (Eds.), International Encyclopedia of Education, 3rd Edition, Elsevier Science, Amsterdam.
[38] Taleb, T., Benslimane, A. and Letaief, K. (2010). Toward an effective risk-conscious and collaborative vehicular collision avoidance system, IEEE Transactions on Vehicular Technology 59(3): 1474–1486.
[39] Thompson, W.J. (2001). Poisson distributions, Computing in Science and Engineering 3(3): 78–82.
[40] Treiber, M., Hennecke, A. and Helbing, D. (2000). Congested traffic states in empirical observations and microscopic simulations, Physical Review E62 10(1103): 1805–1824.
[41] Wilmink, I.R., Klunder, G.A. and Arem, B. (2007). Traffic flow effects of integrated full-range velocity assistance (IRSA), Proceedings of IEEE Intelligent Vehicles Symposium, IVS 2007, Istanbul, Turkey, pp. 1204–1210.