Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_1_a7, author = {Cayero, Juli\'an and Rotondo, Damiano and Morcego, Bernardo and Puig, Vicen\c{c}}, title = {Optimal state observation using quadratic boundedness: {Application} to {UAV} disturbance estimation}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {99--109}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_1_a7/} }
TY - JOUR AU - Cayero, Julián AU - Rotondo, Damiano AU - Morcego, Bernardo AU - Puig, Vicenç TI - Optimal state observation using quadratic boundedness: Application to UAV disturbance estimation JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 99 EP - 109 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_1_a7/ LA - en ID - IJAMCS_2019_29_1_a7 ER -
%0 Journal Article %A Cayero, Julián %A Rotondo, Damiano %A Morcego, Bernardo %A Puig, Vicenç %T Optimal state observation using quadratic boundedness: Application to UAV disturbance estimation %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 99-109 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_1_a7/ %G en %F IJAMCS_2019_29_1_a7
Cayero, Julián; Rotondo, Damiano; Morcego, Bernardo; Puig, Vicenç. Optimal state observation using quadratic boundedness: Application to UAV disturbance estimation. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 1, pp. 99-109. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_1_a7/
[1] Abbaszadeh, M. and Marquez, H.J. (2009). LMI optimization approach to robust H∞ observer design and static output feedback stabilization for discrete-time nonlinear uncertain systems, International Journal of Robust and Nonlinear Control 19(3): 313–340.
[2] Alessandri, A. (2004). Observer design for nonlinear systems by using input-to-state stability, 43rd IEEE Conference on Decision and Control, 2004. CDC, Nassau, The Bahamas, Vol. 4, pp. 3892–3897.
[3] Alessandri, A., Baglietto, M. and Battistelli, G. (2004). On estimation error bounds for receding-horizon filters using quadratic boundedness, IEEE Transactions on Automatic Control 49(8): 1350–1355.
[4] Alessandri, A., Baglietto, M. and Battistelli, G. (2006). Design of state estimators for uncertain linear systems using quadratic boundedness, Automatica 42(3): 497–502.
[5] Alessandri, A. (2013). Design of time-varying state observers for nonlinear systems by using input-to-state stability, American Control Conference (ACC), Washington, DC, USA, pp. 280–285.
[6] Brockman, M.L. and Corless, M. (1995). Quadratic boundedness of nonlinear dynamical systems, 34th IEEE Conference on Decision and Control, New Orleans, LA, USA, Vol. 1, pp. 504–509.
[7] Brockman, M.L. and Corless, M. (1998). Quadratic boundedness of nominally linear systems, International Journal of Control 71(6): 1105–1117.
[8] Buciakowski, M., Witczak, M., Mrugalski, M. and Theilliol, D. (2017a). A quadratic boundedness approach to robust DC motor fault estimation, Control Engineering Practice 66: 181–194.
[9] Buciakowski, M., Witczak, M., Puig, V., Rotondo, D., Nejjari, F. and Korbicz, J. (2017b). A bounded-error approach to simultaneous state and actuator fault estimation for a class of nonlinear systems, Journal of Process Control 52: 14–25.
[10] Busawon, K.K. and Kabore, P. (2001). Disturbance attenuation using proportional integral observers, International Journal of Control 74(6): 618–627.
[11] Chadli, M. and Karimi, H.R. (2013). Robust observer design for unknown inputs Takagi–Sugeno models, IEEE Transactions on Fuzzy Systems 21(1): 158–164.
[12] Chen, W.-H., Ballance, D.J., Gawthrop, P.J. and O’Reilly, J. (2000). A nonlinear disturbance observer for robotic manipulators, IEEE Transactions on Industrial Electronics 47(4): 932–938.
[13] Chen, W.-H., Yang, J., Guo, L. and Li, S. (2016). Disturbance-observer-based control and related methods—an overview, IEEE Transactions on Industrial Electronics 63(2): 1083–1095.
[14] Chibani, A., Chadli, M., Shi, P. and Braiek, N.B. (2017). Fuzzy fault detection filter design for T–S fuzzy systems in the finite-frequency domain, IEEE Transactions on Fuzzy Systems 25(5): 1051–1061.
[15] Ding, B. (2009). Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi–Sugeno’s form, Automatica 45(9): 2093–2098.
[16] Ding, B. (2013). New formulation of dynamic output feedback robust model predictive control with guaranteed quadratic boundedness, Asian Journal of Control 15(1): 302–309.
[17] Ding, B. and Pan, H. (2016). Output feedback robust MPC for LPV system with polytopic model parametric uncertainty and bounded disturbance, International Journal of Control 89(8): 1554–1571.
[18] Godbole, A.A., Kolhe, J.P. and Talole, S.E. (2013). Performance analysis of generalized extended state observer in tackling sinusoidal disturbances, IEEE Transactions on Control Systems Technology 21(6): 2212–2223.
[19] Grip, H.F., Saberi, A. and Johansen, T.A. (2012). Observers for interconnected nonlinear and linear systems, Automatica 48(7): 1339–1346.
[20] Hartman, D., Landis, K., Mehrer, M., Moreno, S. and Kim, J. (2014). Quadcopter dynamic modeling and simulation (Quad-Sim), https://github.com/dch33/Quad-Sim.
[21] Hassani, H., Zarei, J., Chadli, M. and Qiu, J. (2017). Unknown input observer design for interval type-2 T–S fuzzy systems with immeasurable premise variables, IEEE Transactions on Cybernetics 47(9): 2639–2650.
[22] Johnson, C. (1971). Accommodation of external disturbances in linear regulator and servomechanism problems, IEEE Transactions on Automatic Control 16(6): 635–644.
[23] Kelly, J. and Sukhatme, G. S. (2011). Visual-inertial sensor fusion: Localization, mapping and sensor-to-sensor self-calibration, The International Journal of Robotics Research 30(1): 56–79.
[24] Kim, K.-S., Rew, K.-H. and Kim, S. (2010). Disturbance observer for estimating higher order disturbances in time series expansion, IEEE Transactions on Automatic Control 55(8): 1905–1911.
[25] Koenig, D. (2005). Unknown input proportional multiple-integral observer design for linear descriptor systems: Application to state and fault estimation, IEEE Transactions on Automatic Control 50(2): 212–217.
[26] Kwon, S. and Chung, W. K. (2003). A discrete-time design and analysis of perturbation observer for motion control applications, IEEE Transactions on Control Systems Technology 11(3): 399–407.
[27] Li, S., Yang, J., Chen, W.-H. and Chen, X. (2012). Generalized extended state observer based control for systems with mismatched uncertainties, IEEE Transactions on Industrial Electronics 59(12): 4792–4802.
[28] Lynen, S., Achtelik, M. W., Weiss, S., Chli, M. and Siegwart, R. (2013). A robust and modular multi-sensor fusion approach applied to MAV navigation, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, pp. 3923–3929.
[29] Ping, X. (2017). Output feedback robust MPC based on off-line observer for LPV systems via quadratic boundedness, Asian Journal of Control 19(4): 1641–1653.
[30] Ping, X., Wang, P. and Li, Z. (2017). Quadratic boundedness of LPV systems via saturated dynamic output feedback controller, Optimal Control Applications and Methods 38(6): 1239–1248.
[31] Miettinen, K. (1999). Nonlinear Multiobjective Optimization, International Series in Operations Research and Management Science, Vol. 12, Springer, New York, NY.
[32] Ros, L., Sabater, A. and Thomas, F. (2002). An ellipsoidal calculus based on propagation and fusion, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics 32(4): 430–442.
[33] Rotondo, D., Witczak, M., Puig, V., Nejjari, F. and Pazera, M. (2016). Robust unknown input observer for state and fault estimation in discrete-time Takagi–Sugeno systems, International Journal of Systems Science 47(14): 3409–3424.
[34] Ruggiero, F., Cacace, J., Sadeghian, H. and Lippiello, V. (2014). Impedance control of VToL UAVs with a momentum-based external generalized forces estimator, IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, pp. 2093–2099.
[35] Ruggiero, F., Cacace, J., Sadeghian, H. and Lippiello, V. (2015). Passivity-based control of VToL UAVs with a momentum-based estimator of external wrench and unmodeled dynamics, Robotics and Autonomous Systems 72: 139–151.
[36] Santamaria-Navarro, A., Sola, J. and Andrade-Cetto, J. (2015). High-frequency MAV state estimation using low-cost inertial and optical flow measurement units, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, pp. 1864–1871.
[37] She, J.-H., Fang, M., Ohyama, Y., Hashimoto, H. and Wu, M. (2008). Improving disturbance-rejection performance based on an equivalent-input-disturbance approach, IEEE Transactions on Industrial Electronics 55(1): 380–389.
[38] Su, J., Chen, W.-H. and Li, B. (2015). High order disturbance observer design for linear and nonlinear systems, IEEE International Conference on Information and Automation, Lijiang, China, pp. 1893–1898.
[39] Wang, Z., Huang, B. and Unbehauen, H. (1999). Robust h∞ observer design of linear state delayed systems with parametric uncertainty: The discrete-time case, Automatica 35(6): 1161–1167.
[40] Witczak, M., Buciakowski, M. and Aubrun, C. (2016). Predictive actuator fault-tolerant control under ellipsoidal bounding, International Journal of Adaptive Control and Signal Processing 30(2): 375–392.
[41] Witczak, M., Rotondo, D., Puig, V., Nejjari, F. and Pazera, M. (2017). Fault estimation of wind turbines using combined adaptive and parameter estimation schemes, International Journal of Adaptive Control and Signal Processing 32(4): 549–567.
[42] Yüksel, B., Secchi, C., Bülthoff, H.H. and Franchi, A. (2014). A nonlinear force observer for quadrotors and application to physical interactive tasks, IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Besacon, France, pp. 433–440.
[43] Zeitz, M. (1987). The extended Luenberger observer for nonlinear systems, Systems Control Letters 9(2): 149–156.
[44] Zhang, L., Liu, X. and Kong, X. (2012a). State estimators for uncertain linear systems with different disturbance/noise using quadratic boundedness, Journal of Applied Mathematics 2012, Article ID: 101353.
[45] Zhang, W., Su, H., Wang, H. and Han, Z. (2012b). Full-order and reduced-order observers for one-sided Lipschitz nonlinear systems using Riccati equations, Communications in Nonlinear Science and Numerical Simulation 17(12): 4968–4977.
[46] Zou, T. and Li, S. (2011). Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi–Sugeno’s form, Journal of the Franklin Institute 348(10): 2849–2862.