Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_1_a3, author = {Haq, Anam and Wilk, Szymon and Abell\'o, Alberto}, title = {Fusion of clinical data: {A} case study to predict the type of treatment of bone fractures}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {51--67}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_1_a3/} }
TY - JOUR AU - Haq, Anam AU - Wilk, Szymon AU - Abelló, Alberto TI - Fusion of clinical data: A case study to predict the type of treatment of bone fractures JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 51 EP - 67 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_1_a3/ LA - en ID - IJAMCS_2019_29_1_a3 ER -
%0 Journal Article %A Haq, Anam %A Wilk, Szymon %A Abelló, Alberto %T Fusion of clinical data: A case study to predict the type of treatment of bone fractures %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 51-67 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_1_a3/ %G en %F IJAMCS_2019_29_1_a3
Haq, Anam; Wilk, Szymon; Abelló, Alberto. Fusion of clinical data: A case study to predict the type of treatment of bone fractures. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 1, pp. 51-67. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_1_a3/
[1] Al-Ayyoub, M. and Al-Zghool, D. (2014). Determining the type of long bone fractures in X-ray images, WSEAS Transactions on Information Science and Applications 10(8): 261–270.
[2] Brzezinski, J., Kosiedowski, M., Mazurek, C., Slowinski, K., Slowinski, R., Stroinski, M. and Weglarz, J. (2013). Towards telemedical centers: Digitization of inter-professional communication in healthcare, in M. Cruz-Cunha et al. (Eds.), Handbook of Research on ICTs and Management Systems for Improving Efficiency in Healthcare and Social Care, IGI Global, Hershey, PA, pp. 805–829.
[3] Castanedo, F. (2013). A review of data fusion techniques, The Scientific World Journal 2013: 704504, DOI: 10.1155/2013/704504.
[4] Cha, Y.-H., Ha, Y.-C., Yoo, J.-I., Min, Y.-S., Lee, Y.-K. and Koo, K.-H. (2017). Effect of causes of surgical delay on early and late mortality in patients with proximal hip fracture, Archives of Orthopaedic and Trauma Surgery 137(5): 625–630.
[5] de Bruijne, M. (2016). Machine learning approaches in medical image analysis: From detection to diagnosis, Medical Image Analysis 33: 94–97, DOI: 10.106/j.media.2016.06.032.
[6] Dittman, D.J., Khoshgoftaar, T.M. and Napolitano, A. (2014). Selecting the appropriate data sampling approach for imbalanced and high-dimensional bioinformatics datasets, IEEE 14th International Conference on Bioinformatics and Bioengineering, BIBE 2014, Boca Raton, FL, USA, pp. 304–310.
[7] Douali, N. and Jaulent, M. (2012). Genomic and personalized medicine decision support system, 2012 IEEE International Conference on Complex Systems (ICCS), Agadir, Morocco, pp. 1–4.
[8] Edward, C.P. and Hepzibah, H. (2015). A robust approach for detection of the type of fracture from X-ray images, International Journal of Advanced Research in Computer and Communication Engineering 4(3): 479–482.
[9] Ferri, C., Hernndez-Orallo, J. and Modroiu, R. (2009). An experimental comparison of performance measures for classification, Pattern Recognition Letters 30(1): 27–38.
[10] Giddins, G.E.B. (2015). The non-operative management of hand fractures, Journal of Hand Surgery (European Volume) 40(1): 33–41.
[11] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I.H. (2009). The WEKA data mining software: An update, ACM SIGKDD Explorations Newsletter 11(1): 10–18.
[12] Haq, A. and Wilk, S. (2017). Fusion of clinical data: A case study to predict the type of treatment of bone fractures, in M. Kirikova et al. (Eds.), New Trends in Databases and Information Systems, Springer, Cham, pp. 294–301.
[13] Hossain, M., Neelapala, V. and Andrew, J.G. (2008). Results of non-operative treatment following hip fracture compared to surgical intervention, Injury 40(4): 418–421.
[14] Jesneck, J., Nolte, L., Baker, J., Floyd, C. and Lo, J. (2006). Optimized approach to decision fusion of heterogeneous data for breast cancer diagnosis, Medical Physics 33(8): 2945–2954, DOI: 10.1118/1.2208934.
[15] Khatik, I. (2017). A study of various bone fracture detection techniques, International Journal of Engineering and Computer Science 6(5): 21418–21423.
[16] Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V. and Fotiadis, D.I. (2015). Machine learning applications in cancer prognosis and prediction, Computational and Structural Biotechnology Journal 13: 8–17.
[17] Koziarski, M. and Woźniak, M. (2017). CCR: A combined cleaning and resampling algorithm for imbalanced data classification, International Journal of Applied Mathematics and Computer Sciences 27(4): 727–736, DOI: 10.1515/amcs-2017-0050.
[18] Kuhn, M. and Johnson, K. (2013). Applied Predictive Modeling, Springer, New York, NY.
[19] Lahat, D., Adali, T. and Jutten, C. (2015). Multimodal data fusion: An overview of methods, challenges, and prospects, Proceedings of the IEEE 103(9): 1449–1477.
[20] Lanckriet, G., Deng, M., Cristianini, N., Jordan, M. and Noble, W. (2004). Kernel-based data fusion and its application to protein function prediction in yeast, Pacific Symposium on Biocomputing (PSB 2004), Big Island, HI, USA, pp. 300–311.
[21] Lee, G., Doyle, S., Monaco, J., Madabhushi, A., Feldman, M.D., Master, S.R. and Tomaszewski, J.E. (2009). A knowledge representation framework for integration, classification of multi-scale imaging and non-imaging data: Preliminary results in predicting prostate cancer recurrence by fusing mass spectrometry and histology, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, USA, pp. 77–80.
[22] Mitchell, H.B. (2014). Data Fusion: Concepts and Ideas, Springer, Berlin/Heidelberg.
[23] Ponti, M. (2011). Combining classifiers: From the creation of ensembles to the decision fusion, 2011 24th SIBGRAPI Conference on Graphics, Patterns, and Images Tutorials, Maceio, Alagoas, Brazil, pp. 1–10.
[24] Rohlfing, T., Pfefferbaum, A., Sullivan, E. and Maurer, C. (2005). Information fusion in biomedical image analysis: Combination of data vs combination of interpretations, 19th International Conference on Information Processing in Medical Imaging (IPMI’05), Glenwood Springs, CO, USA, pp. 150–161.
[25] Salzberg, S.L. and Fayyad, U. (1997). On comparing classifiers: Pitfalls to avoid and a recommended approach, Data Mining and Knowledge Discovery 1(3): 317–328, DOI: 10.1023/A:1009752403260.
[26] Sim, L.L.W., Ban, K.H.K., Tan, T.W., Sethi, S.K. and Loh, T.P. (2017). Development of a clinical decision support system for diabetes care: A pilot study, PLOS ONE 12(2): 1–15, DOI:10.1371/journal.pone.0173021.
[27] Tiwari, P., Viswanath, S., Lee, G. and Madabhushi, A. (2011). Multi-modal data fusion schemes for integrated classification of imaging and non-imaging biomedical data, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago, IL, USA, pp. 165–168.
[28] Viswanath, S.E., Tiwari, P., Lee, G. and Madabhushi, A. (2017). Dimensionality reduction-based fusion approaches for imaging and non-imaging biomedical data: Concepts, workflow, and use-cases, BMC Medical Imaging 17(1): 2.
[29] Wilk, S., Stefanowski, J., Wojciechowski, S., Farion, K.J. and Michalowski, W. (2016). Application of preprocessing methods to imbalanced clinical data: An experimental study, in E. Pietka et al. (Eds.), Information Techmologies in Medicine, Springer, Berlin/Heidelberg, pp. 503–515.
[30] Yuksel, S.E.,Wilson, J.N. and Gader, P.D. (2012). Twenty years of mixture of experts, IEEE Transactions on Neural Networks and Learning Systems 23(8): 1177–1193.
[31] Zorluoglu, G. and Agaoglu, M. (2015). Diagnosis of breast cancer using ensemble of data mining classification methods, International Journal of Bioinformatics and Biomedical Engineering 1(3): 318–322.