Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_1_a2, author = {Mahlknecht, Giovanni and Dign\"os, Anton and Kozmina, Natalija}, title = {Modeling and querying facts with period timestamps in data warehouses}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {31--49}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_1_a2/} }
TY - JOUR AU - Mahlknecht, Giovanni AU - Dignös, Anton AU - Kozmina, Natalija TI - Modeling and querying facts with period timestamps in data warehouses JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 31 EP - 49 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_1_a2/ LA - en ID - IJAMCS_2019_29_1_a2 ER -
%0 Journal Article %A Mahlknecht, Giovanni %A Dignös, Anton %A Kozmina, Natalija %T Modeling and querying facts with period timestamps in data warehouses %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 31-49 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_1_a2/ %G en %F IJAMCS_2019_29_1_a2
Mahlknecht, Giovanni; Dignös, Anton; Kozmina, Natalija. Modeling and querying facts with period timestamps in data warehouses. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 1, pp. 31-49. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_1_a2/
[1] Ahmed, W., Zimányi, E. and Wrembel, R. (2014). A logical model for multiversion data warehouses, Proceedings of the 16th International Conference on Data Warehousing and Knowledge Discovery, DaWaK 2014, Munich, Germany, pp. 23–34.
[2] Bebel, B., Cichowicz, T., Morzy, T., Rytwinski, F., Wrembel, R. and Koncilia, C. (2015). Sequential data analytics by means of Seq-SQL language, Proceedings of the 26th International Conference on Database and Expert Systems Applications, DEXA 2015, Valencia, Spain, Part I, pp. 416–431.
[3] Ben-Gan, I., Machanic, A., Sarka, D. and Farlee, K. (2015). TSQL Querying, Microsoft Press, Redmond, WA.
[4] Blaschka, M., Sapia, C. and Höfling, G. (1999). On schema evolution in multidimensional databases, Proceedings of the 1st International Conference on Data Warehousing and Knowledge Discovery, DaWaK 1999, Florence, Italy, pp. 153–164.
[5] Bliujute, R., Saltenis, S., Slivinskas, G. and Jensen, C.S. (1998). Systematic change management in dimensional data warehousing, Proceedings of the 3rd International Baltic Workshop on DB and IS, Riga, Latvia, pp. 27–41.
[6] Böhlen, M.H., Dignös, A., Gamper, J. and Jensen, C.S. (2018). Temporal data management—an overview, in E. Zimányi (Ed.), Business Intelligence and Big Data, Springer International Publishing, Cham, pp. 51–83.
[7] Böhlen, M.H., Gamper, J. and Jensen, C.S. (2006a). An algebraic framework for temporal attribute characteristics, Annals of Mathematics and Artificial Intelligence 46(3): 349–374.
[8] Böhlen, M.H., Gamper, J. and Jensen, C.S. (2006b). Multi-dimensional aggregation for temporal data, Proceedings of the 10th International Conference on Extending Database Technology, EDBT 2006, Munich, Germany, pp. 257–275.
[9] Böhlen, M.H., Gamper, J., Jensen, C.S. and Snodgrass, R.T. (2009). SQL-based temporal query languages, in L. Liu and M. Tamer Özsu (Eds.), Encyclopedia of Database Systems, Springer, New York, NY, pp. 2762–2768.
[10] Bouros, P. and Mamoulis, N. (2017). A forward scan based plane sweep algorithm for parallel interval joins, Proceedings of the VLDB Endowment 10(11): 1346–1357.
[11] Cafagna, F. and Böhlen, M.H. (2017). Disjoint interval partitioning, The VLDB Journal 26(3): 447–466.
[12] Dignös, A., Böhlen, M.H. and Gamper, J. (2012). Temporal alignment, Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, pp. 433–444.
[13] Dignös, A., Böhlen, M.H. and Gamper, J. (2013). Query time scaling of attribute values in interval timestamped databases, Proceedings of the 29th IEEE International Conference on Data Engineering, ICDE 2013, Brisbane, Australia, pp. 1304–1307.
[14] Dignös, A., Böhlen, M.H., Gamper, J. and Jensen, C.S. (2016). Extending the kernel of a relational DBMS with comprehensive support for sequenced temporal queries, ACM Transactions on Database Systems 41(4): 26:1–26:46.
[15] Eder, J., Koncilia, C. and Morzy, T. (2002). The COMET metamodel for temporal data warehouses, Proceedings of the 14th International Conference on Advanced Information Systems Engineering, CAiSE 2002, Toronto, Canada, pp. 83–99.
[16] Faisal, S. and Sarwar, M. (2014). Handling slowly changing dimensions in data warehouses, Journal of Systems and Software 94: 151–160.
[17] Gao, D., Jensen, C.S., Snodgrass, R.T. and Soo, M.D. (2005). Join operations in temporal databases, The VLDB Journal 14(1): 2–29.
[18] Garani, G., Adam, G.K. and Ventzas, D. (2016). Temporal data warehouse logical modelling, International Journal of Data Mining, Modelling and Management 8(2): 144–159.
[19] Golfarelli, M. and Rizzi, S. (2009a). Data Warehouse Design: Modern Principles and Methodologies, McGraw-Hill, Inc., New York, NY.
[20] Golfarelli, M. and Rizzi, S. (2009b). A survey on temporal data warehousing, International Journal of Data Warehousing and Mining 5(1): 1–17.
[21] Golfarelli, M. and Rizzi, S. (2011). Temporal data warehousing: Approaches and techniques, in D. Taniar and L. Chen (Eds.), Integrations of Data Warehousing, Data Mining and Database Technologies—Innovative Approaches, Information Science Reference, London, pp. 1–18.
[22] Goller, M. and Berger, S. (2013). Slowly changing measures, Proceedings of the 16th International Workshop on Data Warehousing and OLAP, DOLAP 2013, San Francisco, CA, USA, pp. 47–54.
[23] Goller, M. and Berger, S. (2015). Handling measurement function changes with slowly changing measures, Information Systems 53: 107–123.
[24] Höpken, W., Fuchs, M., Höll, G., Keil, D. and Lexhagen, M. (2013). Multi-dimensional data modelling for a tourism destination data warehouse, Proceedings of the International Conference on Information and Communication Technologies in Tourism 2013, Insbrusck, Austria, pp. 157–169.
[25] Jensen, C.S., Pedersen, T.B. and Thomsen, C. (2010). Multidimensional Databases and Data Warehousing, Synthesis Lectures on Data Management, Morgan Claypool Publishers, San Rafael, CA.
[26] Jensen, C.S. and Snodgrass, R.T. (2009). Temporal database, in L. Liu and M. Tamer Özsu (Eds.), Encyclopedia of Database Systems, Springer, New York, NY, p. 2957.
[27] Jensen, C.S., Soo, M.D. and Snodgrass, R.T. (1994). Unifying temporal data models via a conceptual model, Information Systems 19(7): 513–547.
[28] Kimball, R. and Ross, M. (2013). The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edn., Wiley Publishing, Hoboken, NJ.
[29] Kline, N. and Snodgrass, R.T. (1995). Computing temporal aggregates, Proceedings of the 11th International Conference on Data Engineering, ICDE 1995, Taipei, Taiwan, pp. 222–231.
[30] Koncilia, C. (2003). A bi-temporal data warehouse model, Proceedings of the 15th Conference on Advanced Information Systems Engineering, CAiSE 2003, Klagenfurt, Austria, Vol. 74.
[31] Koncilia, C., Morzy, T., Wrembel, R. and Eder, J. (2014). Interval OLAP:Analyzing interval data, Proceedings of the 16th International Conference on Data Warehousing and Knowledge Discovery, DaWaK 2014, Munich, Germany, pp. 233–244.
[32] Lenz, H. and Shoshani, A. (1997). Summarizability in OLAP and statistical data bases, Proceedings of the 9th International Conference on Scientific and Statistical Database Management, SSDBM 1997, Olympia, WA, USA, pp. 132–143.
[33] Lorentzos, N.A. (2009). Period-stamped temporal models, in L. Liu and M. Tamer Özsu (Eds.), Encyclopedia of Database Systems, Springer, New York, NY, pp. 2094–2098.
[34] Malinowski, E. and Zimányi, E. (2008). A conceptual model for temporal data warehouses and its transformation to the ER and the object-relational models, Data Knowledge Engineering 64(1): 101–133.
[35] Melton, J. and Simon, A.R. (2002). Advanced SQL query expressions, in J. Melton and A.R. Simon (Eds.), SQL: 1999, Morgan Kaufmann, Burlington, VA, pp. 265–353.
[36] Moon, B., Vega Lopez, I.F. and Immanuel, V. (2003). Efficient algorithms for large-scale temporal aggregation, IEEE Transactions on Knowledge and Data Engineering 15(3): 744–759.
[37] Piatov, D. and Helmer, S. (2017). Sweeping-based temporal aggregation, Proceedings of the 15th International Symposium on Advances in Spatial and Temporal Databases, SSTD 2017, Arlington, VA, USA, pp. 125–144.
[38] Piatov, D., Helmer, S. and Dignös, A. (2016). An interval join optimized for modern hardware, Proceedings of the 32nd IEEE International Conference on Data Engineering, ICDE 2016, Helsinki, Finland, pp. 1098–1109.
[39] Toman, D. (2009). Point-stamped temporal models, in L. Liu and M. Tamer Özsu (Eds.), Encyclopedia of Database Systems, Springer, New York, NY, pp. 2119–2123.
[40] Wrembel, R. and Bebel, B. (2007). Metadata management in a multiversion data warehouse, Journal on Data Semantics 8: 118–157.
[41] Yang, J. and Widom, J. (2003). Incremental computation and maintenance of temporal aggregates, The VLDB Journal 12(3): 262–283.
[42] Zhang, D., Markowetz, A., Tsotras, V.J., Gunopulos, D. and Seeger, B. (2001). Efficient computation of temporal aggregates with range predicates, Proceedings of the 20th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 2001, Santa Barbara, CA, USA, pp. 237–245.
[43] Zhang, D., Tsotras, V.J. and Seeger, B. (2002). Efficient temporal join processing using indices, Proceedings of the 18th International Conference on Data Engineering, ICDE 2002, San Jose, CA, USA, pp. 103–113.