Synchronization of fractional-order discrete-time chaotic systems by an exact delayed state reconstructor: Application to secure communication
International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 1, pp. 179-194.

Voir la notice de l'article provenant de la source Library of Science

This paper deals with the synchronization of fractional-order chaotic discrete-time systems. First, some new concepts regarding the output-memory observability of non-linear fractional-order discrete-time systems are developed. A rank criterion for output-memory observability is derived. Second, a dead-beat observer which recovers exactly the true state system from the knowledge of a finite number of delayed inputs and delayed outputs is proposed. The case of the presence of an unknown input is also studied. Third, secure data communication based on a generalized fractional-order Hénon map is proposed. Numerical simulations and application to secure speech communication are presented to show the efficiency of the proposed approach.
Keywords: fractional order, discrete time system, chaotic map, chaotic synchronization, dead-beat observer, secure data communication
Mots-clés : rząd ułamkowy, układ dyskretny, synchronizacja chaosu, komunikacja bezpieczna
@article{IJAMCS_2019_29_1_a13,
     author = {Djennoune, Said and Bettayeb, Maamar and Al-Saggaf, Ubaid Muhsen},
     title = {Synchronization of fractional-order discrete-time chaotic systems by an exact delayed state reconstructor: {Application} to secure communication},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {179--194},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_1_a13/}
}
TY  - JOUR
AU  - Djennoune, Said
AU  - Bettayeb, Maamar
AU  - Al-Saggaf, Ubaid Muhsen
TI  - Synchronization of fractional-order discrete-time chaotic systems by an exact delayed state reconstructor: Application to secure communication
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2019
SP  - 179
EP  - 194
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_1_a13/
LA  - en
ID  - IJAMCS_2019_29_1_a13
ER  - 
%0 Journal Article
%A Djennoune, Said
%A Bettayeb, Maamar
%A Al-Saggaf, Ubaid Muhsen
%T Synchronization of fractional-order discrete-time chaotic systems by an exact delayed state reconstructor: Application to secure communication
%J International Journal of Applied Mathematics and Computer Science
%D 2019
%P 179-194
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_1_a13/
%G en
%F IJAMCS_2019_29_1_a13
Djennoune, Said; Bettayeb, Maamar; Al-Saggaf, Ubaid Muhsen. Synchronization of fractional-order discrete-time chaotic systems by an exact delayed state reconstructor: Application to secure communication. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 1, pp. 179-194. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_1_a13/

[1] Abdeljawad, T. and Baleanu, D. (2009). Fractional differences and integration by parts, Journal of Computational Analysis and Applications 13(3): 981–989.

[2] Agrawal, S., Srivastava, M. and Das, S. (2012). Synchronization of fractional-order chaotic systems using active control method, Chaos Solitons Fractals 45(6): 737–752.

[3] Albertini, F. and D’Alessandro, D. (1996). Remarks on the observability of nonlinear discrete time systems, in J. Doležal and J. Fidler (Eds.), System Modelling and Optimization, Springer, Boston, MA, pp. 155–162.

[4] Albertini, F. and D’Alessandro, D. (2002). Observability and forward-backward observability of discrete-time nonlinear systems, Mathematics of Control, Signals, and Systems 15(4): 275–290.

[5] Atici, F. and Eloe, P.W. (2007). Fractional q-calculus on a time scale, Journal of Nonlinear Mathematical Physics 14(3): 333–344.

[6] Atici, F. and Eloe, P.W. (2009). Initial value problems in discrete fractional calculus, Proceedings of the American Mathematical Society 13(4): 981–989.

[7] Balachandran, K. and Kokila, J. (2012). On the controllability of fractional dynamical systems, International Journal of Applied Mathematics and Computer Science 22(3): 523–531, DOI: 10.2478/v10006-012-0039-0.

[8] Barbot, J.P., Djemai, M. and Boukhobza, T. (2002). Sliding mode observers, in W. Perruquetti and J.-P. Barbot (Eds.), Sliding-Mode Control in Engineering, CRC Press, New York, NY, pp. 103–130.

[9] Bastos, N.R.O., Ferreira, R.A.C. and Torres, D.F.M. (2011a). Discrete-time fractional variational problems, Signal Processing 91(3): 513–524.

[10] Bastos, N.R.O., Ferreira, R.A.C. and Torres, D.F.M. (2011b). Necessary optimality conditions for fractional difference problems of the calculus of variations, Discrete and Continuous Dynamical Systems 29(2): 417–437.

[11] Belmouhoub, I., Djemai, M. and Barbot, J.-P. (2003). An example of nonlinear discrete-time synchronization of chaotic systems for secure communications, European Control Conference (ECC), Cambridge, UK, pp. 3478–3483.

[12] Buslowicz, M. (2008). Stability of linear continuous-time fractional order systems with delays of the retarded type, Bulletin of the Polish Academy of Sciences: Technical Science 56(4): 319–324.

[13] Chen, F., Luo, X. and Zhou, Y. (2011). Existence results for nonlinear fractional difference equations, Advances in Difference Equations, Article ID: 713201, DOI: 10.1155/2011/713201.

[14] Djemai, M., Barbot, P. and Belmouhoub, I. (2009). Discrete time normal form for left invertibility problem, European Journal of Control 15(2): 194–204.

[15] Dzieliński, A. (2016). Optimal control for discrete fractional systems, in A. Babiarz et al. (Eds.), Theory and Applications of Non-integer Order Systems, Lecture Notes in Electrical Engineering, Vol. 407, Springer International Publishing, Cham, pp. 175–185.

[16] Dzieliński, A. and Sierociuk, D. (2008). Stability of discrete fractional state-space systems, Journal of Vibration and Control 14(9–10): 1543–1556.

[17] Eckmann, J.P. and Ruelle, D. (1985). Ergodic theory of chaos and strange attractors, Review of Modern Physics 57(3): 617–656.

[18] Edelman, M. (2018). On the stability of fixed points and chaos in fractional systems, Chaos 28(023112): 023112-1–023112-9.

[19] Feki, M., Robert, B., Gelle, G. and Colas, M. (2003). Secure digital communication using discrete-time chaos synchronization, Chaos, Solitons and Fractals 18(4): 881–890.

[20] Ferreira, R.A.C. and Torres, D.F.M. (2011). Fractional h-difference equations arising from the calculus of variations, Applicable Analysis and Discrete Mathematics 5(1): 110–121.

[21] Guermah, S., Djennoune, S. and Bettayeb, M. (2008a). Asymptotic stability and practical stability of linear discrete-time fractional order systems, 3rd IFAC Workshop on Fractional Differentiation and its Applications, Ankara, Turkey.

[22] Guermah, S., Djennoune, S. and Bettayeb, M. (2008b). Controllability and observability of linear discrete-time fractional-order systems, International Journal of Applied Mathematics and Computer Science 18(2): 213–222, DOI: 10.2478/v10006-008-0019-6.

[23] Hanba, S. (1982). Further results on the uniform observability of discrete-time nonlinear systems, IEEE Transactions on Automatic Control 55(4): 1034–1038.

[24] Hénon, M. (1976). A two-dimensional mapping with a strange attractor, Communications in Mathematical Physics 50(1): 69–77.

[25] Holm, M. (2011). The Laplace transform in discrete fractional calculus, Computers Mathematics with Applications 62(3): 1591–1601.

[26] Jakubczyk, B. and Sontag, E. (1990). Controllability of nonlinear discrete time systems: A Lie-algebraic approach, SIAM Journal of Control and Optimization 28(1): 1–33.

[27] Kaczorek, T. (2016). Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems, International Journal of Applied Mathematics and Computer Science 26(2): 277–283, DOI: 10.1515/amcs-2016-0019.

[28] Khanzadeh, A. and Pourgholi, M. (2016). Robust synchronization of fractional-order chaotic systems at a pre-specified time using sliding mode controller with time-varying switching surfaces, Chaos Solitons Fractals 91: 69–77.

[29] Liao, X., Gao, Z. and Huang, H. (2013). Synchronization control of fractional-order discrete-time chaotic systems, European Control Conference (ECC), Zürich, Switzerland, pp. 2214–2219.

[30] Liu, Y. (2014). Discrete chaos in fractional Hénon maps, International Journal of Nonlinear Science 18(3): 170–175.

[31] Luo, C. and Wang, X. (2013). Chaos generated from the fractional-order Chen system and its application to digital secure communication, International Journal of Modern Physics C 24(4): 1350025.

[32] Magin, R.L. (2004). Fractional Calculus in Bioengineering, Begell House Publishers, Danbury, CT.

[33] Miller, K. and Ross, B. (1989). Fractional difference calculus, Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications, Koriyama, Japan, pp. 139–152.

[34] Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D.Y. and Feliu, Y. (2010). Fractional-Order Systems and Control: Fundamentals and Applications, Springer-Verlag, London.

[35] Mozyrska, D. and Bartosiewicz, Z. (2010). On observability concepts for nonlinear discrete-time fractional order control systems, in D. Baleanu et al. (Eds.), New Trends in Nanotechnology and Fractional Calculus Applications, Springer International Publishing, Cham, pp. 305–312.

[36] Mozyrska, D., Girejko, E. And Wyrwas, M. (2013a). Comparison of h-difference fractional operators, in W. Mitkowski et al. (Eds.), Advances in the Theory and Applications of noninteger Order Systems, Springer International Publishing, Cham, pp. 191–197.

[37] Mozyrska, D. and Pawłuszewicz, E. (2010). Observability of linear q-difference fractional-order systems with finite initial memory, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(4): 601–605.

[38] Mozyrska, D. and Pawłuszewicz, E. (2011). Linear q-difference fractional order systems with finite memory, Acta Mechanica and Automatica 5(2): 69–73.

[39] Mozyrska, D. and Pawłuszewicz, E. (2012). Fractional discrete-time linear control systems with initialisation, International Journal of Control 85(2): 213–219.

[40] Mozyrska, D., Pawłuszewicz, E., and Wyrwas, M. (2013b). Observability of h-difference linear control systems with two fractional orders, 14th International Carpathian Control Conference (ICCC-2013), Rytro, Poland, pp. 292–296.

[41] Mozyrska, D., Pawłuszewicz, E. and Wyrwas, M. (2015). The h-difference approach to controllability and observability of fractional linear systems with Caputo-type operator, Asian Journal of Control 17(4): 1163–1173.

[42] Munkhammar, J. (2013). Chaos in a fractional order logistic map, Fractional Calculus and Applied Analysis 16(3): 511–519.

[43] N’Doye, I., Darouach, M., Voos, H. and Zasadzinski, M. (2016). Design of unknown input fractional-order observers for fractional-order systems, International Journal of Applied Mathematics and Computer Science 23(3): 491–500, DOI: 10.2478/amcs-2013-0037.

[44] Nijmeijer, H. and Mareels, I.M.Y. (1997). An observer looks at synchronization, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 44(10): 882–890.

[45] Nijmeijer, M. (1982). Observability of discrete time nonlinear systems: A geometric approach, International Journal of Control 36(5): 865–871.

[46] Ortigueira, M.D. (2000). Introduction to fractional linear systems. Part 2: Discrete-time case, IEE Proceedings: Vision Image and Signal Processing 14(1): 62–70.

[47] Orue, A.B., Fernandex, V., Alvarez, G., Pastor, G., Romera, M., Li, S. and Montoy, F. (2008). Determination of the parameters for a Lorenz system and application to break the security of two-channel chaotic cryptosystems, Physics Letters A 372(34): 5588–5592.

[48] Pareek, N., Patidar, V. and Sud, K. (2006). Image encryption using chaotic logistic map, Image and Vision Computing 24(9): 926–934.

[49] Pawłuszewicz, E. and Mozyrska, D. (2013). Local controllability of nonlinear discrete-time fractional order systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(1): 251–256.

[50] Pecora, L. and Carroll, T. (1990). Synchronization in chaotic systems, Physical Review Letters 64(8): 821–825.

[51] Peng, G.J., Jiang, Y.L. and Chen, F. (2014). Generalized projective synchronization of fractional-order chaotic systems, Physica A: Statistical Mechanics and Its Applications 387(14): 3738–3746.

[52] Petras, I. (2011). Fractional-Order Nonlinear Systems: Modelling, Analysis and Simulation, Springer, Dordrecht.

[53] Podlubny, I. (1998). Fractional Differential Equation, Academic Press, New York, NY.

[54] Podlubny, I. (2003). Geometric and physical interpretation of fractional integral and fractional derivatives, Journal of Fractional Calculus 5(4): 367–386.

[55] Richter, H. (2002). The generalized Hénon maps: Examples for higher dimensional chaos, International Journal of Bifurcation and Chaos 12(6): 1371–1381.

[56] Sabatier, J., Agrawal, O. and Machado, J.T. (2008). Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Berlin.

[57] Shao, S., Chen, M. and Yan, X. (2016). Adaptive sliding mode synchronization for a class of fractional-order chaotic systems with disturbance, Nonlinear Dynamics 83(4): 1855–1866.

[58] Sharma, V., Agrawal, V., Sharma, B.B. and Nath, R. (2016). Unknown input nonlinear observer design for continuous and discrete time systems with input recovery scheme, Nonlinear Dynamics 85(1): 645–658.

[59] Sira-Ramirez, H., Aguilar-Ibaaez, C. and Suarez-Castaan, M. (2002). Exact state reconstruction in the recovery of messages encrypted by the state of nonlinear discrete-time chaotic systems, International Journal of Bifurcation and Chaos 12(1): 169–177.

[60] Sira-Ramirez, H. and Rouchon, P. (2001). Exact state reconstructors in nonlinear discrete-time systems control, European Union Nonlinear Control Network Workshop, Sheffield, UK.

[61] Tarasov, V.E. (2010). Fractional Zaslavsky and Hénon discrete maps, in C.J. Luo and V. Afraimovich (Eds.), Longrange Interaction, Stochasticity and Fractional Dynamics, Springer, Berlin/Heidelberg, pp. 1–26.

[62] Trujillo, J.J. and Ungureanu, V.M. (2018). Optimal control of discrete-time linear fractional order systems with multiplicative noise, International Journal of Control 91(1): 57–69.

[63] Wolf, A., Swith, J.B., Swinney, H.L. and Vastano, J.A. (1985). Determining Lyapunov exponents from a time series, Physica D: Nonlinear Phenomena 16(3): 285–317.

[64] Wu, G. and Baleanu, D. (2014a). Chaos synchronization of the discrete fractional logistic map, Signal Processing 102: 96–99.

[65] Wu, G. and Baleanu, D. (2014b). Discrete fractional logistic map and its chaos, Nonlinear Dynamics 75(1–2): 283–287.

[66] Wu, G.-C. and Baleanu, D. (2015). Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps, Communication in Nonlinear Sciences and Numerical Simulation 22(1–3): 95–100.

[67] Wu, G.-C., Baleanu, D. and Lin, Z.-X. (2016). Image encryption technique based on fractional chaotic time series, Journal of Vibration and Control 22(8): 2092–2099.

[68] Wua, G.C., Baleanu, D., Xie, H.-P. and Chen, F.-L. (2016). Chaos synchronization of fractional chaotic maps based on the stability condition, Physica A: Statistical Mechanics and Its Applications 460: 374–383.

[69] Wyrwas, M., Pawłuszewicz, E. and Girejko, E. (2015). Stability of nonlinear h-difference systems with n fractional orders, Kybernetika 51(1): 112–136.

[70] Xi, H.L., Yu, S.M., Zhang, R.X. and Xu, L. (2014). Adaptive impulsive synchronization for a class of fractional-order chaotic and hyperchaotic systems, Optik, International Journal for Light and Electron Optics 125(9): 2036–2040.

[71] Zhen, W., Xia, H., Ning, L. and Xiao-Na, S. (2012). Image encryption based on a delayed fractional-order chaotic logistic system, Chinese Physics B 21(5): 050506.