Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_4_a3, author = {Oprz\k{e}dkiewicz, K. and Mitkowski, W.}, title = {A memory-efficient noninteger-order discrete{\textendash}time state{\textendash}space model of a heat transfer process}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {649--659}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_4_a3/} }
TY - JOUR AU - Oprzędkiewicz, K. AU - Mitkowski, W. TI - A memory-efficient noninteger-order discrete–time state–space model of a heat transfer process JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 649 EP - 659 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_4_a3/ LA - en ID - IJAMCS_2018_28_4_a3 ER -
%0 Journal Article %A Oprzędkiewicz, K. %A Mitkowski, W. %T A memory-efficient noninteger-order discrete–time state–space model of a heat transfer process %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 649-659 %V 28 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_4_a3/ %G en %F IJAMCS_2018_28_4_a3
Oprzędkiewicz, K.; Mitkowski, W. A memory-efficient noninteger-order discrete–time state–space model of a heat transfer process. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 4, pp. 649-659. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_4_a3/
[1] Al-Alaoui,M. (1993). Novel digital integrator and differentiator, Electronics Letters 29(4): 376–378.
[2] Almeida, R. and Torres, D.F.M. (2011). Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, Communications in Nonlinear Science and Numerical Simulation 16(3): 1490–1500.
[3] Rauh, A., Senkel, L., Aschemann, H., Saurin, V.V. and Kostin, G.V. (2016). An integrodifferential approach to modeling, control, state estimation and optimization for heat transfer systems, International Journal of Applied Mathematics and Computer Science 26(1): 15–30, DOI: 10.1515/amcs-2016-0002.
[4] Baeumer, B., Kurita, S. and Meerschaert, M. (2005). Inhomogeneous fractional diffusion equations, Fractional Calculus and Applied Analysis 8(4): 371–386.
[5] Balachandran, K. and Divya, S. (2014). Controllability of nonlinear implicit fractional integrodifferential systems, International Journal of Applied Mathematics and Computer Science 24(4): 713–722, DOI: 10.2478/amcs-2014-0052.
[6] Balachandran, K. and Kokila, J. (2012). On the controllability of fractional dynamical systems, International Journal of Applied Mathematics and Computer Science 22(3): 523–531, DOI: 10.2478/v10006-012-0039-0.
[7] Bartecki, K. (2013). A general transfer function representation for a class of hyperbolic distributed parameter systems, International Journal of Applied Mathematics and Computer Science 23(2): 291–307, DOI: 10.2478/amcs-2013-0022.
[8] Caponetto, R., Dongola, G., Fortuna, L. and Petras, I. (2010). Fractional order systems: Modeling and control applications, in L.O. Chua (Ed.), World Scientific Series on Nonlinear Science, University of California, Berkeley, CA, pp. 1–178.
[9] Chen, Y.Q. and Moore, K.L. (2002). Discretization schemes for fractional-order differentiators and integrators, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(3): 263–269.
[10] Das, S. (2010). Functional Fractional Calculus for System Identification and Control, Springer, Berlin.
[11] Dlugosz, M. and Skruch, P. (2015). The application of fractional-order models for thermal process modelling inside buildings, Journal of Building Physics 1(1): 1–13.
[12] Dzieliński, A., Sierociuk, D. and Sarwas, G. (2010). Some applications of fractional order calculus, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(4): 583–592.
[13] Gal, C. and Warma, M. (2016). Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions, Evolution Equations and Control Theory 5(1): 61–103.
[14] Kaczorek, T. (2011). Selected Problems of Fractional Systems Theory, Springer, Berlin.
[15] Kaczorek, T. (2016). Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems, International Journal of Applied Mathematics and Computer Science 26(2): 277–283, DOI: 10.1515/amcs-2016-0019.
[16] Kaczorek, T. and Rogowski, K. (2014). Fractional Linear Systems and Electrical Circuits, Bialystok University of Technology, Bialystok.
[17] Kochubei, A. (2011). Fractional-parabolic systems, arXiv:1009.4996 [math.ap].
[18] Mitkowski, W. (1991). Stabilization of Dynamic Systems, WNT, Warsaw, (in Polish).
[19] Mitkowski, W. (2011). Approximation of fractional diffusion-wave equation, Acta Mechanica et Automatica 5(2): 65–68.
[20] N’Doye, I., Darouach, M., Voos, H. and Zasadzinski, M. (2013). Design of unknown input fractional-order observers for fractional-order systems, International Journal of Applied Mathematics and Computer Science 23(3): 491–500, DOI: 10.2478/amcs-2013-0037.
[21] Obrączka, A. (2014). Control of Heat Processes with the Use of Non-integer Models, PhD thesis, AGH UST, Kraków.
[22] Oprzędkiewicz, K. (2003). The interval parabolic system, Archives of Control Sciences 13(4): 415–430.
[23] Oprzędkiewicz, K. (2004). A controllability problem for a class of uncertain parameters linear dynamic systems, Archives of Control Sciences 14(1): 85–100.
[24] Oprzędkiewicz, K. (2005). An observability problem for a class of uncertain-parameter linear dynamic systems, International Journal of Applied Mathematics and Computer Science 15(3): 331–338.
[25] Oprzędkiewicz, K. and Gawin, E. (2016). A noninteger order, state space model for one dimensional heat transfer process, Archives of Control Sciences 26(2): 261–275.
[26] Oprzędkiewicz, K., Gawin, E. and Mitkowski, W. (2016a). Modeling heat distribution with the use of a noninteger order, state space model, International Journal of Applied Mathematics and Computer Science 26(4): 749–756, DOI: 10.1515/amcs-2016-0052.
[27] Oprzędkiewicz, K., Gawin, E. and Mitkowski, W. (2016b). Parameter identification for noninteger order, state space models of heat plant, MMAR 2016: 21st International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 184–188.
[28] Oprzędkiewicz, K., Mitkowski, W. and Gawin, E. (2017a). An accuracy estimation for a noninteger order, discrete, state space model of heat transfer process, Automation 2017: Innovations in Automation, Robotics and Measurement Techniques, Warsaw, Poland, pp. 86–98.
[29] Oprzędkiewicz, K., Stanisławski, R., Gawin, E. and Mitkowski, W. (2017b). A new algorithm for a CFE approximated solution of a discrete-time noninteger-order state equation, Bulletin of the Polish Academy of Sciences: Technical Sciences 65(4): 429–437.
[30] Ostalczyk, P. (2016). Discrete Fractional Calculus. Applications in Control and Image Processing, World Scientific, Singapore.
[31] Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, NY.
[32] Petras, I. (2009a). Fractional order feedback control of a DC motor, Journal of Electrical Engineering 60(3): 117–128.
[33] Petras, I. (2009b). http://people.tuke.sk/igor.podlubny/USU/matlab/petras/dfod2.m.
[34] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.
[35] Popescu, E. (2010). On the fractional Cauchy problem associated with a feller semigroup, Mathematical Reports 12(2): 181–188.
[36] Sierociuk, D., Skovranek, T.,Macias,M., Podlubny, I., Petras, I., Dzielinski, A. and Ziubinski, P. (2015). Diffusion process modeling by using fractional-order models, Applied Mathematics and Computation 257(1): 2–11.
[37] Stanisławski, R. and Latawiec, K. (2013a). Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: New necessary and sufficient conditions for asymptotic stability, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(2): 353–361.
[38] Stanisławski, R. and Latawiec, K. (2013b). Stability analysis for discrete-time fractional-order LTI state-space systems. Part II: Stability criterion for FD-based systems, Bulletin of the Polish Academy of Sciences; Technical Sciences 61(2): 362–370.
[39] Stanisławski, R., Latawiec, K. and Łukaniszyn, M. (2015). A comparative analysis of Laguerre-based approximators to the Grünwald–Letnikov fractional-order difference, Mathematical Problems in Engineering 2015(1): 1–10.
[40] Yang, Q., Liu, F. and Turner, I. (2010). Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Applied Mathematical Modelling 34(1): 200–218.