Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_4_a2, author = {Zhirabok, A. and Shumsky, A.}, title = {Fault diagnosis in nonlinear hybrid systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {635--648}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_4_a2/} }
TY - JOUR AU - Zhirabok, A. AU - Shumsky, A. TI - Fault diagnosis in nonlinear hybrid systems JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 635 EP - 648 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_4_a2/ LA - en ID - IJAMCS_2018_28_4_a2 ER -
Zhirabok, A.; Shumsky, A. Fault diagnosis in nonlinear hybrid systems. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 4, pp. 635-648. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_4_a2/
[1] Alcorta-Garcia, E. and Frank, P. (1997). Deterministic nonlinear observer based approach to fault diagnosis: A survey, Control Engineering Practice 5(5): 663–670.
[2] Blanke, M., Kinnaert, M., Lunze, J., and Staroswiecki, M. (2006). Diagnosis and Fault-Tolerant Control, Springer, Berlin.
[3] Cocquempot, V., Mezyani, T., and Staroswiecki, M. (2004). Fault detection and isolation for hybrid systems using structured parity residuals, 5th Asian Control Conference, Melbourne, Australia, pp. 1204–1212.
[4] Ding, S. (2014). Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems, Springer, London.
[5] Gertler, J. (1998). Fault Detection and Diagnosis in Engineering Systems, Marcel Dekker, New York, NY.
[6] Gruyitch, L. (2007). Nonlinear hybrid control systems Nonlinear Analysis: Hybrid Systems 1(1): 139–140.
[7] Farhat, A. and Koenig, D. (2017). Robust fault detection for uncertain switched systems, 20th IFAC World Congress, Toulouse, France, pp. 15830–15835.
[8] Hartmanis, J. and Stearns, R. (1966). The Algebraic Structure Theory of Sequential Machines, Prentice-Hall, New York, NY.
[9] Isidori, A. (1995). Nonlinear Control Systems, Springer, London.
[10] Kaldmäe, A., Kotta, Ü., Shumsky, A., and Zhirabok, A. (2013). Measurement feedback disturbance decoupling in discrete-time nonlinear systems, Automatica 49(9): 2887–2891.
[11] Laboudi, K., Messai, N., and Manamanni, N. (2015). Fault estimation for a class of switched linear systems, IFAC Symposium SAFEPROCESS 2015, Paris, France, pp. 1054–1059.
[12] Leth, J. and Wisniewski, R. (2014). Local analysis of hybrid systems on polyhedral sets with state-dependent switching, International Journal of Applied Mathematics and Computer Science 24(2): 341–355, DOI: 10.2478/amcs-2014-0026.
[13] Li, J., Ding, S., Qiu, J., Yang, Y., and Zhang, Y. (2016). Approach for discrete-time nonlinear systems via piecewise-fuzzy Lyapunov functions, IEEE Transactions on Fuzzy Systems 24(6): 1320–1333.
[14] Patton, R. (1994). Robust model-based fault diagnosis: The state of the art, IFAC Symposium SAFEPROCESS 1994, Espoo, Finland, pp. 1–24.
[15] Patton, R., Frank, P., and Clark, R. (2000). Issues of Fault Diagnosis for Dynamic Systems, Springer, London.
[16] Pröll, S., Jarmolowitz, F., and Lunze, J. (2015). Structural diagnosability analysis of switched systems, IFAC Symposium SAFEPROCESS 2015, Paris, France, pp. 156–163.
[17] Schreier, G., Ragot, J., Patton, R., and Frank, F. (1997). Observer design for a class of nonlinear systems, IFAC Symposium SAFEPROCESS 1997, Hull, UK, pp. 498–503.
[18] Shumsky, A. and Zhirabok, A. (2006). Nonlinear diagnostic filter design: Algebraic and geometric points of view, International Journal of Applied Mathematics and Computer Science 16(1): 115–127.
[19] Shumsky, A. and Zhirabok, A. (2010). Unified approach to the problem of full decoupling via output feedback, European Journal of Control 16(4): 313–325.
[20] Shumsky, A., Zhirabok, A., Jiang, B., and Yang, H. (2012). Transformation of hybrid systems: Application to reduced order observer design, IASTED International Conference on Control and Applications, Crete, Greece, pp. 98–103.
[21] Shumsky, A. and Zhirabok, A. (2012). Redundancy relations for fault diagnosis in hybrid systems, IFAC Symposium SAFEPROCESS 2012, Mexico, Mexico, pp. 1226–1231.
[22] Tabatabaeipour, S., Ravn, A., Izadi-Zamanabadi, R., and Bak, T. (2009). Active fault diagnosis of linear hybrid systems, IFAC Symposium SAFEPROCESS 2009, Barcelona, Spain, pp. 211–216.
[23] Yang, H., Jiang, B., and Cocquempot, V. (2010). Fault Tolerant Control Design for Hybrid Systems, Springer, Berlin/Heidelberg.
[24] Witczak, M. (2014). Fault Diagnosis and Fault Tolerant Control Strategies for Nonlinear Systems, Springer, Berlin/Heidelberg.
[25] Zattoni, E. (2018). A geometric approach to structural model matching by output feedback in linear impulsive systems, International Journal of Applied Mathematics and Computer Science 28(1): 25–38, DOI: 10.2478/amcs-2018-0002.
[26] Zhao, S., Huang, B., Luan, X., Yin, Y., and Liu, F. (2015). Robust fault detection and diagnosis for multiple-model systems with uncertainties, IFAC Symposium SAFEPROCESS 2015, Paris, France, pp. 137–142.
[27] Zhirabok, A. and Shumsky, A. (2008). The Algebraic Methods for Analysis of Nonlinear Dynamic Systems, Dalnauka, Vladivostok, (in Russian).
[28] Zhirabok, A., Shumsky, A., and Pavlov, S. (2017). Diagnosis of linear dynamic systems by the nonparametric method, Automation and Remote Control 78(7): 1173–1188.
[29] Zhirabok, A., Shumsky, A., Solyanik, S., and Suvorov, A. (2017). Fault detection in nonlinear systems via linear methods, International Journal of Applied Mathematics and Computer Science 27(2): 261–272, DOI: 10.1515/amcs-2017-0019.