Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_4_a0, author = {Li, Q. and Liu, S. and Chen, Y.}, title = {Finite-time adaptive modified function projective multi-lag generalized compound synchronization for multiple uncertain chaotic systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {613--624}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_4_a0/} }
TY - JOUR AU - Li, Q. AU - Liu, S. AU - Chen, Y. TI - Finite-time adaptive modified function projective multi-lag generalized compound synchronization for multiple uncertain chaotic systems JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 613 EP - 624 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_4_a0/ LA - en ID - IJAMCS_2018_28_4_a0 ER -
%0 Journal Article %A Li, Q. %A Liu, S. %A Chen, Y. %T Finite-time adaptive modified function projective multi-lag generalized compound synchronization for multiple uncertain chaotic systems %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 613-624 %V 28 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_4_a0/ %G en %F IJAMCS_2018_28_4_a0
Li, Q.; Liu, S.; Chen, Y. Finite-time adaptive modified function projective multi-lag generalized compound synchronization for multiple uncertain chaotic systems. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 4, pp. 613-624. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_4_a0/
[1] Aghababa, M.P., Khanmohammadi, S. and Alizadeh, G. (2011). Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique, Applied Mathematical Modelling 35(6): 3080–3091.
[2] Ben Brahim, A., Dhahri, S., Ben Hmida, F. and Sellami, A. (2015). An H∞ sliding mode observer for Takagi–Sugeno nonlinear systems with simultaneous actuator and sensor faults, International Journal of Applied Mathematics and Computer Science 25(3): 547–559, DOI: 10.1515/amcs-2015-0041.
[3] Bhat, S.P. and Bernstein, D.S. (2000). Finite-time stability of continuous autonomous systems, SIAM Journal on Control and Optimization 38(3): 751–766.
[4] Boccaletti, S. and Valladares, D. (2000). Characterization of intermittent lag synchronization, Physical Review E 62(5B): 7497.
[5] Cai, N., Jing, Y. and Zhang, S. (2010). Modified projective synchronization of chaotic systems with disturbances via active sliding mode control, Communications in Nonlinear Science and Numerical Simulation 15(6): 1613–1620.
[6] Chen, Y., Fei, S. and Li, Y. (2015). Stabilization of neutral time-delay systems with actuator saturation via auxiliary time-delay feedback, Automatica 52(C): 242–247.
[7] Chen, Y., Wu, X. and Gui, Z. (2010). Global synchronization criteria for a class of third-order non-autonomous chaotic systems via linear state error feedback control, Applied Mathematical Modelling 34(12): 4161–4170.
[8] Cheng, L., Yang, Y., Li, L. and Sui, X. (2018). Finite-time hybrid projective synchronization of the drive-response complex networks with distributed-delay via adaptive intermittent control, Physica A: Statistical Mechanics and Its Applications 500(15): 273–286.
[9] Du, H., Zeng, Q. and Lü, N. (2010). A general method for modified function projective lag synchronization in chaotic systems, Physics Letters A 374(13): 1493–1496.
[10] Du, H., Zeng, Q. and Wang, C. (2008). Function projective synchronization of different chaotic systems with uncertain parameters, Physics Letters A 372(33): 5402–5410.
[11] Du, H., Zeng, Q. and Wang, C. (2009). Modified function projective synchronization of chaotic system, Chaos Solitons and Fractals 42(4): 2399–2404.
[12] Fedele, G., D’Alfonso, L., Pin, G. and Parisini, T. (2018). Volterras kernels-based finite-time parameters estimation of the Chua system, Applied Mathematics and Computation 318(1): 121–130.
[13] Gao, Y., Sun, B. and Lu, G. (2013). Modified function projective lag synchronization of chaotic systems with disturbance estimations, Applied Mathematical Modelling 37(7): 4993–5000.
[14] Grzybowski, J., Rafikov, M. and Balthazar, J. (2009). Synchronization of the unified chaotic system and application in secure communication, Communications in Nonlinear Science and Numerical Simulation 14(6): 2793–2806.
[15] Haimo, V. (1986). Finite time controllers, SIAM Journal on Control and Optimization 24(4): 760–770.
[16] Hramov, A. and Koronovskii, A. (2004). An approach to chaotic synchronization, Chaos: An Interdisciplinary Journal of Nonlinear Science 14(3): 603–610.
[17] Kaczorek, T. (2016). Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems, International Journal of Applied Mathematics and Computer Science 26(2): 277–283, DOI:10.1515/amcs-2016-0019.
[18] Kim, C.M., Rim, S., Kye, W.H., Ryu, J.W. and Park, Y.J. (2003). Anti-synchronization of chaotic oscillators, Physics Letters A 320(1): 39–46.
[19] Lee, S., Ji, D., Park, J. and Won, S. (2008). H∞ synchronization of chaotic systems via dynamic feedback approach, Physics Letters A 374(17–18): 1900–1900.
[20] Li, Q. and Liu, S. (2017). Dual-stage adaptive finite-time modified function projective multi-lag combined synchronization for multiple uncertain chaotic systems, Open Mathematics 15(1): 1035–1047.
[21] Liu, L., Cao, X., Fu, Z., Song, S. and Xing, H. (2018). Finite-time control of uncertain fractional-order positive impulsive switched systems with mode-dependent average D-well time, Circuits, Systems, and Signal Processing 37(9): 3739–3755, DOI: 10.1007/s00034-018-0752-5.
[22] Liu, L., Fu, Z., Cai, X. and Song, X. (2013a). Non-fragile sliding mode control of discrete singular systems, Communications in Nonlinear Science and Numerical Simulation 18(3): 735–743.
[23] Liu, L., Fu, Z. and Song, X. (2013b). Passivity-based sliding mode control for a polytopic stochastic differential inclusion system, ISA Transactions 52(6): 775–780.
[24] Liu, L., Pu, J., Song, X., Fu, Z. and Wang, X. (2014). Adaptive sliding mode control of uncertain chaotic systems with input nonlinearity, Nonlinear Dynamics 76(4): 1857–1865.
[25] Liu, L., Song, X. and Li, X. (2012). Adaptive exponential synchronization of chaotic recurrent neural networks with stochastic perturbation, IEEE International Conference on Automation and Logistics, Zhengzhou, China, pp. 332–336.
[26] Lu, J., Ho, D.W. and Cao, J. (2010). A unified synchronization criterion for impulsive dynamical networks, Automatica 46(7): 1215–1221.
[27] Luo, R. and Wang, Y. (2012). Finite-time stochastic combination synchronization of three different chaotic systems and its application in secure communication, Chaos 22(2): 023109.
[28] Luo, R., Wang, Y. and Deng, S. (2011). Combination synchronization of three classic chaotic systems using active backstepping design, Chaos 21(4): 043114.
[29] Mainieri, R. and Rehacek, J. (1999). Projective synchronization in three-dimensional chaotic systems, Physical Review Letters 82(15): 3042–3045.
[30] Mu, X. and Chen, Y. (2016). Synchronization of delayed discrete-time neural networks subject to saturated time-delay feedback, Neurocomputing 175(A): 293–299.
[31] Park, E., Zaks, M. and Kurths, J. (1999). Phase synchronization in the forced Lorenz system, Physics Review E 60(6A): 6627–6638.
[32] Pecora, L. and Carroll, T. (1990). Synchronization in chaotic systems, Physical Review Letters 06(08): 821–824.
[33] Rosenblum, M.G., Pikovsky, A.S. and Kurths, J. (1997). From phase to lag synchronization in coupled chaotic oscillators, Physical Review Letters 44(78): 4193–4196.
[34] Song, Q., Cao, J. and Liu, F. (2010). Synchronization of complex dynamical networks with nonidentical nodes, Physics Letters A 374(4): 544–551.
[35] Srinivasarengan, K., Ragot, J., Aubrun, C. and Maquin, D. (2018). An adaptive observer design approach for discrete-time nonlinear systems, International Journal of Applied Mathematics and Computer Science 28(1): 55–67, DOI: 10.2478/amcs-2018-0004.
[36] Sudheer, K.S. and Sabir, M. (2011). Adaptive modified function projective synchronization of multiple time-delayed chaotic Rossler system, Physics Letters A 375(8): 1176–1178.
[37] Sun, J., Shen, Y. and Cui, G. (2015). Compound synchronization of four chaotic complex systems, Advances in Mathematical Physics 2015(A): 1–11, DOI: 10.1155/2015/921515.
[38] Sun, J., Shen, Y., Wang, X. and Chen, J. (2014). Finite-time combination-combination synchronization of four different chaotic systems with unknown parameters via sliding mode control, Nonlinear Dynamics 76(1): 383–397.
[39] Wang, B. and Wen, G. (2007). On the synchronization of a class of chaotic systems based on back-stepping method, Physics Letters A 370(1): 35–39.
[40] Wang, F. and Liu, C. (2007). Synchronization of unified chaotic system based on passive control, Physica D: Nonlinear Phenomena 225(1): 55–60.
[41] Wang, H., Han, Z.Z., Xie, Q.Y. and Zhang, W. (2009). Finite-time chaos control via nonsingular terminal sliding mode control, Communications in Nonlinear Science and Numerical Simulation 14(6): 2728–2733.
[42] Wang, S., Zheng, S., Zhang, B. and Cao, H. (2016). Modified function projective lag synchronization of uncertain complex networks with time-varying coupling strength, Optik-International Journal for Light and Electron Optics 127(11): 4716–4725.
[43] Wang, X. and Wei, N. (2015). Modified function projective lag synchronization of hyper chaotic complex systems with parameter perturbations and external perturbations, Journal of Vibration and Control 21(16): 3266–3280.
[44] Wen, G. and Xu, D. (2005). Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems, Chaos Solitons and Fractals 26(1): 71–77.
[45] Xia, J., Gao, H., Liu, M., Zhuang, G. and Zhang, B. (2018). Non-fragile finite-time extended dissipative control for a class of uncertain discrete time switched linear systems, Journal of the Franklin Institute 355(6): 3031–3049.
[46] Xu, Y., Zhou, W., Fang, J., Xie, C. and Tong, D. (2016). Finite-time synchronization of the complex dynamical network with nonderivative and derivative coupling, Neurocomputing 173(1): 1356–1361.
[47] Yang, S. and Duan, C. (1998). Generalized synchronization in chaotic systems, Chaos Solitons and Fractals 9(10): 1703–1707.
[48] Yu, H. and Liu, Y. (2003). Chaotic synchronization based on stability criterion of linear systems, Physics Letters A 314(4): 292–298.
[49] Yu, X. and Man, Z. (2002). Fast terminal sliding-mode control design for nonlinear dynamical systems, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(2): 261–264.