Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_3_a8, author = {Ajgl, J. and Straka, O.}, title = {Fusion of multiple estimates by covariance intersection: {Why} and how it is suboptimal}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {521--530}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a8/} }
TY - JOUR AU - Ajgl, J. AU - Straka, O. TI - Fusion of multiple estimates by covariance intersection: Why and how it is suboptimal JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 521 EP - 530 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a8/ LA - en ID - IJAMCS_2018_28_3_a8 ER -
%0 Journal Article %A Ajgl, J. %A Straka, O. %T Fusion of multiple estimates by covariance intersection: Why and how it is suboptimal %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 521-530 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a8/ %G en %F IJAMCS_2018_28_3_a8
Ajgl, J.; Straka, O. Fusion of multiple estimates by covariance intersection: Why and how it is suboptimal. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 3, pp. 521-530. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a8/
[1] Ajgl, J. and Šimandl, M. (2014). On linear estimation fusion under unknown correlations of estimator errors, Proceedings of the 19th IFAC World Congress, Cape Town, South Africa, pp. 2364-2369.
[2] Ajgl, J., Šimandl, M., Reinhardt, M., Noack, B. and Hanebeck, U.D. (2014). Covariance Intersection in state estimation of dynamical systems, Proceedings of the 17th International Conference on Information Fusion, Salamanca, Spain.
[3] Ajgl, J. and Straka, O. (2016a). Covariance Intersection in track-to-track fusion with memory, Proceedings of the 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Baden-Baden, Germany, pp. 359–364.
[4] Ajgl, J. and Straka, O. (2016b). Covariance Intersection in track-to-track fusion without memory, Proceedings of the 19th International Conference on Information Fusion, Heidelberg, Germany.
[5] Ajgl, J. and Straka, O. (2017). A geometrical perspective on fusion under unknown correlations based on Minkowski sums, Proceedings of the 20th International Conference on Information Fusion, Xi’an, China, pp. 725–732.
[6] Arambel, P.O., Rago, C. and Mehra, R.K. (2001). Covariance intersection algorithm for distributed spacecraft state estimation, Proceedings of the American Control Conference, Arlington, VA, USA, pp. 4398–4403.
[7] Bar-Shalom, Y., Li, X.-R. and Kirubarajan, T. (2001). Estimation with Applications to Tracking and Navigation, Wiley, Hoboken, NJ.
[8] Bar-Shalom, Y., Willet, P.K. and Tian, X. (2011). Tracking and Data Fusion: A Handbook of Algorithms, YBS Publishing, Storrs, CT.
[9] Chen, L., Arambel, P.O. and Mehra, R.K. (2002). Fusion under unknown correlation—covariance intersection as a special case, Proceedings of the 5th International Conference on Information Fusion, Annapolis, MD, USA, pp. 905–912.
[10] Deng, Z., Zhang, P., Qi, W., Liu, J. and Gao, Y. (2012). Sequential covariance intersection fusion Kalman filter, Information Sciences 189: 293–309.
[11] Gao, Y., Li, X.R. and Song, E. (2016). Robust linear estimation fusion with allowable unknown cross-covariance, IEEE Transactions on Systems, Man, and Cybernetics: Systems 46(9): 1314–1325.
[12] Hanebeck, U.D., Briechle, K. and Horn, J. (2001). A tight bound for the joint covariance of two random vectors with unknown but constrained cross-correlation, Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Baden-Baden, Germany, pp. 147–152.
[13] Hu, J., Xie, L. and Zhang, C. (2012). Diffusion Kalman filtering based on covariance intersection, IEEE Transactions on Signal Processing 60(2): 891–902.
[14] Julier, S.J. and Uhlmann, J.K. (1997). A non-divergent estimation algorithm in the presence of unknown correlations, Proceedings of the American Control Conference, Albuquerque, NM, USA, pp. 2369–2373.
[15] Julier, S.J. and Uhlmann, J.K. (2001). General decentralized data fusion with covariance intersection, in D.L. Hall and J. Llinas (Eds.), Handbook of Multisensor Data Fusion, CRC Press, Boca Raton, FL.
[16] Kowalczuk, Z. and Domżalski, M. (2013). Asynchronous distributed state estimation for continuous-time stochastic processes, International Journal of Applied Mathematics and Computer Science 23(2): 327–339, DOI: 10.2478/amcs-2013-0025.
[17] Kurzhanski, A.B. and V´alyi, I. (1997). Ellipsoidal Calculus for Estimation and Control, Birkhäuser, Boston, MA.
[18] Lehmann, E.L. and Casella, G. (1998). Theory of Point Estimation, 2nd Edn., Springer, Berlin/Heidelberg.
[19] Li, X.-R., Zhu, Y., Wang, J. and Han, C. (2003). Optimal linear estimation fusion—Part I: Unified fusion rules, IEEE Transactions on Information Theory 49(9): 2192–2208.
[20] Reinhardt, M., Noack, B., Arambel, P.O. and Hanebeck, U.D. (2015). Minimum covariance bounds for the fusion under unknown correlations, IEEE Signal Processing Letters 22(9): 1210–1214.
[21] Seeger, A. (1993). Calculus rules for combinations of ellipsoids and applications, Bulletin of the Australian Mathematical Society 47(1): 1–12.
[22] Simon, D. (2006). Optimal State Estimation: Kalman, H-Infinity, and Nonlinear Approaches, Wiley, Hoboken, NJ.
[23] Uhlmann, J.K. (2003). Covariance consistency methods for fault-tolerant distributed data fusion, Information Fusion 4(3): 201–215.
[24] Wu, Z., Cai, Q. and Fu, M. (2018). Covariance intersection for partially correlated random vectors, IEEE Transactions on Automatic Control 63(3): 619–629.