A fast evaluation of initial configurations in repeatable inverse kinematics for redundant manipulators
International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 3, pp. 483-492.

Voir la notice de l'article provenant de la source Library of Science

A repeatable inverse kinematic task in robot manipulators consists in finding a loop (cyclic trajectory) in a configuration space, which corresponds to a given loop in a task space. In the robotic literature, an entry configuration to the trajectory is fixed and given by a user. In this paper the assumption is released and a new, indirect method is introduced to find entry configurations generating short trajectories. The method avoids a computationally expensive evaluation of (infinite) many entry configurations for redundant manipulators (for each of them, repeatable inverse kinematics should be run). Some fast-to-compute functions are proposed to evaluate entry configurations and their correlations with resulting lengths of trajectories are computed. It appears that only an original function, based on characteristics of a manipulability subellipsoid, properly distinguishes entry configurations that generate short trajectories. This function can be used either to choose one from a few possible entry configurations or as an optimized function to compute the best initial configuration.
Keywords: robot manipulator, repeatable inverse kinematics, initial configuration
Mots-clés : manipulator robotyczny, kinematyka odwrotna, konfiguracja początkowa
@article{IJAMCS_2018_28_3_a5,
     author = {Duleba, I. and Karcz-Duleba, I. and Mielczarek, A.},
     title = {A fast evaluation of initial configurations in repeatable inverse kinematics for redundant manipulators},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {483--492},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a5/}
}
TY  - JOUR
AU  - Duleba, I.
AU  - Karcz-Duleba, I.
AU  - Mielczarek, A.
TI  - A fast evaluation of initial configurations in repeatable inverse kinematics for redundant manipulators
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2018
SP  - 483
EP  - 492
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a5/
LA  - en
ID  - IJAMCS_2018_28_3_a5
ER  - 
%0 Journal Article
%A Duleba, I.
%A Karcz-Duleba, I.
%A Mielczarek, A.
%T A fast evaluation of initial configurations in repeatable inverse kinematics for redundant manipulators
%J International Journal of Applied Mathematics and Computer Science
%D 2018
%P 483-492
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a5/
%G en
%F IJAMCS_2018_28_3_a5
Duleba, I.; Karcz-Duleba, I.; Mielczarek, A. A fast evaluation of initial configurations in repeatable inverse kinematics for redundant manipulators. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 3, pp. 483-492. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a5/

[1] Chiaverini, S., Oriolo, G. and Walker, I. (2008). Kinematically redundant manipulators, in B. Siciliano and O. Khatib (Eds.), Handbook of Robotics, Springer, Berlin, pp. 245–268.

[2] Dixon, W.J. and Massey, F.J. (1969). Introduction to Statistical Analysis, McGraw-Hill, New York, NY.

[3] Duleba, I. and Karcz-Duleba, I. (2016). A suboptimal solution of repeatable inverse kinematics in robot manipulators with a free entry configuration, Proceedings of the Mediterranean Conference on Control and Automation, Athens, Greece, pp. 563–568.

[4] Duleba, I. and Karcz-Duleba, I. (2017). Suboptimal approximations in repeatable inverse kinematics for robot manipulators, Bulletin of the Polish Academy of Sciences: Technical Sciences 65(2): 209–218.

[5] Duleba, I. and Karcz-Duleba, I. (2018). A comparison of methods solving repeatable inverse kinematics for robot manipulators, Archives of Computer Science, (to appear).

[6] Duleba, I. and Opałka, M. (2013). On application of elastic band method to repeatable inverse kinematics in robot manipulators, Journal of Automation, Mobile Robotics and Intelligent Systems 7(4): 5–12.

[7] Golub, G. and Reinsch, C. (1970). Singular value decomposition and least squares solutions, Numerische Mathematik 14(5): 403420.

[8] Karpińska, J. (2012). Approximation of Algorithms for Robot Motion Planning, PhD thesis, Wrocław University of Technology, Wrocław, (in Polish).

[9] Kendall, M. and Gibbons, J. (1990). Rank Correlation Methods, E. Arnold, London.

[10] Klein, C., Chu-Jeng, C. and Ahmed, S. (1995). A new formulation of the extended Jacobian method and its use in mapping algorithmic singularities for kinematically redundant manipulators, IEEE Transactions on Robotics and Automation 11(1): 50–55.

[11] Maciejewski, A. and Klein, C. (1989). The singular value decomposition: Computation and applications to robotics, International Journal of Robotics Research 8(6): 63–79.

[12] Nakamura, Y. (1991). Advanced Robotics: Redundancy and Optimization, Addison Wesley, New York, NY.

[13] Németh, B., Gáspár, P. and Péni, T. (2016). Nonlinear analysis of vehicle control actuations based on controlled invariant sets, International Journal of Applied Mathematics and Computer Science 26(1): 31–43, DOI: 10.1515/amcs-2016-0003.

[14] Quinlan, S. and Khatib, O. (1993). Elastic bands: Connecting path and control, Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, Vol. 2, pp. 802–807.

[15] Richter, S. and DeCarlo, R. (1983). Continuation methods: Theory and applications, IEEE Transactions on Automatic Control 28(6): 660–665.

[16] Roberts, R. and Maciejewski, A. (1993). Repeatable generalized inverse control strategies for kinematically redundant manipulators, IEEE Transactions on Automatic Control 38(5): 689–699.

[17] Spong, M. and Vidyasagar, M. (1989). Introduction to Robotics. Robot Dynamics and Control,MIT Press, Cambridge, MA.

[18] Tchoń, K., Karpińska, J. and Janiak, M. (2009). Approximation of Jacobian inverse kinematics algorithms, International Journal of Applied Mathematics and Computer Science 19(4): 519–531, DOI: 10.2478/v10006-009-0041-3.