Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_3_a3, author = {Salcedo, J. V. and Mart{\'\i}nez, M. and Garc{\'\i}a-Nieto, S. and Hilario, A.}, title = {BIBO stabilisation of continuous-time {Takagi{\textendash}Sugeno} systems under persistent perturbations and input saturation}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {457--472}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a3/} }
TY - JOUR AU - Salcedo, J. V. AU - Martínez, M. AU - García-Nieto, S. AU - Hilario, A. TI - BIBO stabilisation of continuous-time Takagi–Sugeno systems under persistent perturbations and input saturation JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 457 EP - 472 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a3/ LA - en ID - IJAMCS_2018_28_3_a3 ER -
%0 Journal Article %A Salcedo, J. V. %A Martínez, M. %A García-Nieto, S. %A Hilario, A. %T BIBO stabilisation of continuous-time Takagi–Sugeno systems under persistent perturbations and input saturation %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 457-472 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a3/ %G en %F IJAMCS_2018_28_3_a3
Salcedo, J. V.; Martínez, M.; García-Nieto, S.; Hilario, A. BIBO stabilisation of continuous-time Takagi–Sugeno systems under persistent perturbations and input saturation. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 3, pp. 457-472. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a3/
[1] Abdelmalek, I., Goléa, N. and Hadjili, M.L. (2007). A new fuzzy Lyapunov approach to non-quadratic stabilization of Takagi-Sugeno fuzzy models, International Journal of Applied Mathematics and Computer Science 17(1): 39–51, DOI: 10.2478/v10006-007-0005-4.
[2] Abedor, J., Nagpal, K. and Poolla, K. (1996). Linear matrix inequality approach to peak-to-peak gain minimization, International Journal of Robust and Nonlinear Control 6(9–10): 899–927.
[3] Bai, J., Lu, R., Liu, X., Xue, A. and Shi, Z. (2015). Fuzzy regional pole placement based on fuzzy Lyapunov functions, Neurocomputing 167: 467–473.
[4] Benzaouia, A., El Hajjaji, A., Hmamed, A. and Oubah, R. (2015). Fault tolerant saturated control for T–S fuzzy discrete-time systems with delays, Nonlinear Analysis: Hybrid Systems 18: 60–71.
[5] Bezzaoucha, S., Marx, B., Maquin, D. and Ragot, J. (2013). Stabilization of nonlinear systems subject to actuator saturation, Proceedings of the IEEE International Conference Fuzzy Systems (FUZZ-IEEE), Hyderabad, India, pp. 1–6.
[6] Boyd, S., El Ghaoui, L., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA.
[7] Chang, W.-J. and Shih, Y.-J. (2015). Fuzzy control of multiplicative noised nonlinear systems subject to actuator saturation and h∞ performance constraints, Neurocomputing 148: 512–520.
[8] Chen, C.W. (2006). Stability conditions of fuzzy systems and its application to structural and mechanical systems, Advances in Engineering Software 37(9): 624–629.
[9] da Silva, J.G., Castelan, E., Corso, J. and Eckhard, D. (2013). Dynamic output feedback stabilization for systems with sector-bounded nonlinearities and saturating actuators, Journal of The Franklin Institute 350(3): 464–484.
[10] Du, H. and Zhang, N. (2009). Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint, IEEE Transactions on Fuzzy Systems 17(2): 343–356.
[11] Duan, R., Li, J., Zhang, Y., Yang, Y. and Chen, G. (2016). Stability analysis and H∞ control of discrete T–S fuzzy hyperbolic systems, International Journal of Applied Mathematics and Computer Science 26(1): 133–145, DOI: 10.1515/amcs-2016-0009.
[12] El Ghaoui, L. and Niculescu, S. (Eds.) (2000). Advances in Linear Matrix Inequality Methods in Control, SIAM, Philadelphia, PA.
[13] Gahinet, P., Nemirovski, A., Laub, A.J. and Chilali, M. (1995). LMI control toolbox, Technical report, The Mathworks Inc., Natick, MA.
[14] Goh, K.G., Safonov, M.G. and Ly, J.H. (1996). Robust synthesis via bilinear matrix inequalities, International Journal of Robust and Nonlinear Control 6: 1079–1095.
[15] Guerra, T.M., Bernal, M., Guelton, K. and Labiod, S. (2012). Non-quadratic local stabilization for continuous-time Takagi–Sugeno models, Fuzzy Sets and Systems 201: 40–54.
[16] Guerra, T.M., Kruszewski, A., Vermeiren, L. and Tirmant, H. (2006). Conditions of output stabilization for nonlinear models in the Takagi–Sugeno’s form, Fuzzy Sets and Systems 157: 1248–1259.
[17] Jaadari, A., Guerra, T.M., Sala, A., Bernal, M. and Guelton, K. (2012). New controllers and new designs for continuous-time Takagi–Sugeno models, Proceedings of the IEEE Mathematical Conference on Fuzzy Systems (FUZZ-IEEE), Brisbane, Australia, pp. 1–7.
[18] Klug, M., Castelan, E.B., Leite, V.J. and Silva, L.F. (2015). Fuzzy dynamic output feedback control through nonlinear Takagi–Sugeno models, Fuzzy Sets and Systems 263: 92–111.
[19] Liu, X. and Zhang, Q. (2003). Approaches to quadratic stability conditions and H∞ control designs for T–S fuzzy systems, IEEE Transactions on Fuzzy Systems 11(6): 830–838.
[20] Liu, Y., Wu, F. and Ban, X. (2017). Dynamic output feedback control for continuous-time T–S fuzzy systems using fuzzy Lyapunov functions, IEEE Transactions on Fuzzy Systems 25(5): 1155–1167.
[21] Löfberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB, Proceedings of the CACSD Conference, Taipei, Taiwan, pp. 284–289.
[22] Nguyen, A., Dambrine, M. and Lauber, J. (2014). Lyapunov-based robust control design for a class of switching non-linear systems subject to input saturation: Application to engine control, IET Control Theory and Applications 8(17): 1789–1802.
[23] Nguyen, A., Dequidt, A. and Dambrine,M. (2015). Anti-windup based dynamic output feedback controller design with performance consideration for constrained Takagi–Sugeno systems, Engineering Applications of Artificial Intelligence 40: 76–83.
[24] Nguyen, A.-T., Laurain, T., Palhares, R., Lauber, J., Sentouh, C. and Popieul, J.-C. (2016). LMI-based control synthesis of constrained Takagi–Sugeno fuzzy systems subject to L2 or L∞ disturbances, Neurocomputing 207: 793–804.
[25] Nguyen, A.-T., Márquez, R. and Dequidt, A. (2017). An augmented system approach for LMI-based control design of constrained Takagi–Sugeno fuzzy systems, Engineering Applications of Artificial Intelligence 61: 96–102.
[26] Pan, J., Fei, S., Guerra, T. and Jaadari, A. (2012). Non-quadratic local stabilisation for continuous-time Takagi–Sugeno fuzzy models: A descriptor system method, IET Control Theory and Applications 6(12): 1909–1917.
[27] Qiu, J., Tian, H., Lu, Q. and Gao, H. (2013). Nonsynchronized robust filtering design for continuous-time T–S fuzzy affine dynamic systems based on piecewise Lyapunov functions, IEEE Transactions on Cybernetics 43(6): 1755–1766.
[28] Qiu, J., Wei, Y. and Wu, L. (2017). A novel approach to reliable control of piecewise affine systems with actuator faults, IEEE Transactions on Circuits and Systems II: Express Briefs 64(8): 957–961.
[29] Saifia, D., Chadli, M., Labiod, S. and Guerra, T.M. (2012). Robust h∞ static output feedback stabilization of TS fuzzy systems subject to actuator saturation, International Journal of Control, Automation and Systems 10(3): 613–622.
[30] Salcedo, J. and Martinez, M. (2008). BIBO stabilisation of Takagi–Sugeno fuzzy systems under persistent perturbations using fuzzy output-feedback controllers, IET Control Theory and Applications 2(6): 513–523.
[31] Salcedo, J., Martínez, M., Blasco, X. and Sanchis, J. (2007). BIBO fuzzy stabilization of nonlinear systems under persistent perturbations, Proceedings of the European Control Conference, Kos, Greece, pp. 763–769.
[32] Salcedo, J. V., Martínez, M. and García-Nieto, S. (2008). Stabilization conditions of fuzzy systems under persistent perturbations and their application in nonlinear systems, Engineering Applications of Artificial Intelligence 21(8): 1264–1276.
[33] Sanchez Peña, R.S. and Sznaier, M. (1998). Robust Systems: Theory and Applications, Wiley, New York, NY.
[34] Sturm, J.F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software 11–12(1–4): 625–653.
[35] Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man, and Cybernetics 15(1): 116–132.
[36] Tanaka, K., Ikeda, T. and Wang, H. (1998). Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs, IEEE Transactions on Fuzzy Systems 6(2): 250–265.
[37] Tanaka, K. and Wang, H.O. (2001). Fuzzy Control Systems. Design and Analysis. A Linear Matrix Inequality Approach, Wiley, New York, NY.
[38] Teixeira, M.C.M., Assunçao, E. and Avellar, R.G. (2003). On relaxed LMI-based designs for fuzzy regulators and fuzzy observers, IEEE Transactions on Fuzzy Systems 11(5): 613–623.
[39] Tognetti, E.S. and Oliveira, V.A. (2010). Fuzzy pole placement based on piecewise Lyapunov functions, International Journal of Robust and Nonlinear Control 20(5): 571–578.
[40] Tuan, H., Apkarian, P., Narikiyo, T. and Yamamoto, Y. (2001). Parameterized linear matrix inequality techniques in fuzzy control system design, IEEE Transactions on Fuzzy Systems 9(2): 324–332.
[41] Vafamand, N., Asemani,M.H. and Khayatian, A. (2017). Robust l1 observer-based non-PDC controller design for persistent bounded disturbed TS fuzzy systems, IEEE Transactions on Fuzzy Systems 26(3): 1401–1413.
[42] Vafamand, N., Asemani, M.H. and Khayatian, A. (2017b). TS fuzzy robust L1 control for nonlinear systems with persistent bounded disturbances, Journal of The Franklin Institute 354(14): 5854–5876.
[43] Vafamand, N., Asemani, M.H. and Khayatiyan, A. (2016). A robust L1 controller design for continuous-time TS systems with persistent bounded disturbance and actuator saturation, Engineering Applications of Artificial Intelligence 56: 212–221.
[44] Yang, W. and Tong, S. (2015). Output feedback robust stabilization of switched fuzzy systems with time-delay and actuator saturation, Neurocomputing 164: 173–181.
[45] Zhao, Y. and Gao, H. (2012). Fuzzy-model-based control of an overhead crane with input delay and actuator saturation, IEEE Transactions on Fuzzy Systems 20(1): 181–186.