Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_3_a10, author = {Leski, J. M. and Kotas, M. P.}, title = {Linguistically defined clustering of data}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {545--557}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a10/} }
TY - JOUR AU - Leski, J. M. AU - Kotas, M. P. TI - Linguistically defined clustering of data JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 545 EP - 557 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a10/ LA - en ID - IJAMCS_2018_28_3_a10 ER -
Leski, J. M.; Kotas, M. P. Linguistically defined clustering of data. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 3, pp. 545-557. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a10/
[1] Chang, H. and Yeung, D. (2008). Robust path-based spectral clustering, Pattern Recognition 41(1): 191–203.
[2] Comaniciu, D. and Meer, P. (2002). Mean shift: A robust approach toward feature space analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5): 603–619.
[3] Duda, R., Hart, P. and Stork, D. (2001). Pattern Classification, Wiley, New York, NY.
[4] Ester, M., Kriegiel, H.-P., Sander, J. and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise, Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, KDDM 1996, Portland, OR, USA, pp. 226–231.
[5] Everitt, B., Landau, S., Leese, M. and Stahl, D. (2011). Cluster Analysis, 5th Edn., Wiley, London.
[6] Fu, L. and Medico, E. (2007). Flame, a novel fuzzy clustering method for the analysis of DNA microarray data, BMC Bioinformatics 8(3): 1–15.
[7] Fukunaga, K. and Hostetler, L. (1975). The estimation of the gradient of a density function, with application to pattern recognition, IEEE Transactions on Information Theory 21(1): 32–40.
[8] Gionis, A., Mannila, H. and Tsaparas, P. (2007). Clustering aggregation, ACM Transactions on Knowledge Discovery From Data 1(1): 1–30.
[9] Jain, A. and Law, M. (2005). Data clustering: A user’s dilemma, in S.K. Pal et al. (Eds.), Pattern Recognition and Machine Intelligence, Lecture Notes in Computer Science, Vol. 3776, Springer, New York, NY, pp. 1–10.
[10] Jain, A., Murty, M. and Flynn, P. (1999). Data clustering: A review, ACM Computing Surveys 31(3): 264–323.
[11] Király, A., Vathy-Fogarassy, A. and Abonyi, J. (2016). Geodesic distance based fuzzy c-medoid clustering searching for central points in graphs and high dimensional data, Fuzzy Sets and Systems 286(1): 157–172.
[12] Leski, J. (2015). Fuzzy (c + p)-means clustering and its application to a fuzzy rule-based classifier: Towards good generalization and good interpretability, IEEE Transactions on Fuzzy Systems 23(4): 802–812.
[13] Leski, J. (2016). Fuzzy c-ordered-means clustering, Fuzzy Sets and Systems 286(1): 114–133.
[14] Leski, J. and Kotas, M. (2015). On robust fuzzy c-regression models, Fuzzy Sets and Systems 279(1): 112–129.
[15] Nguyen, S. and Choi, S.-B. (2015). Design of a new adaptive neuro-fuzzy inference system based on a solution for clustering in a data potential field, Fuzzy Sets and Systems 279(1): 64–86.
[16] Pancerz, K., Lewicki, A. and Tadeusiewicz, R. (2015). Ant-based extraction of rules in simple decision systems over ontological graphs, International Journal of Applied Mathematics and Computer Science 25(2): 377–387, DOI: 10.1515/amcs-2015-0029.
[17] Pedrycz, W., Al-Hmouz, R., Balamash, A. and Morfeq, A. (2015). Hierarchical granular clustering: An emergence of information glanules of higher type and higher order, IEEE Transactions on Fuzzy Systems 23(6): 2270–2283.
[18] Ripley, B. (1996). Pattern Recognition and Neural Networks, Cambridge University Press, Cambridge.
[19] Rodriguez, A. and Laio, A. (2014). Clustering by fast search and find of density peaks, Science 344(6191): 1492–1496.
[20] Tou, J. and Gonzalez, R. (1974). Pattern Recognition Principles, Addison-Wesley, London.
[21] Veenman, C., Reinders, M. and Backer, E. (2002). A maximum variance cluster algorithm, IEEE Transactions on Pattern Analysis and Machine Intelligence 24(9): 1273–1280.
[22] Webb, A. (1999). Statistical Pattern Recognition, Arnold, London.
[23] Yager, R. and Filev, D. (1999). Induced ordered weighted averaging operators, IEEE Transactions on Systems, Man and Cybernetics: Cybernetics 29(2): 141–150.
[24] Zadeh, L. (1965). Fuzzy sets, Information and Control 8(1): 338–353.
[25] Zadeh, L. (1978). Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems 1(1): 2–28.
[26] Zahn, C. (1971). Graph-theoretical methods for detecting and describing gestalt clusters, IEEE Transactions on Computers 1(1): 68–86.
[27] Zaki,M. and Meira,W. (2014). Data Mining and Analysis: Fundamental Concepts and Algorithms, Cambridge University Press, New York, NY.
[28] Zok, T., Antczak, M., Riedel, M., Nebel, D., Villmann, T., Lukasiak, P., Blazewicz, J. and Szachniuk, M. (2015). Building the library of RNA 3D nucleotide conformations using the clustering approach, International Journal of Applied Mathematics and Computer Science 25(3): 689–700, DOI: 10.1515/amcs-2015-0050.