Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_3_a0, author = {Li, W. and Huang, C. and Zhai, G.}, title = {Quadratic performance analysis of switched affine time-varying systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {429--440}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a0/} }
TY - JOUR AU - Li, W. AU - Huang, C. AU - Zhai, G. TI - Quadratic performance analysis of switched affine time-varying systems JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 429 EP - 440 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a0/ LA - en ID - IJAMCS_2018_28_3_a0 ER -
%0 Journal Article %A Li, W. %A Huang, C. %A Zhai, G. %T Quadratic performance analysis of switched affine time-varying systems %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 429-440 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a0/ %G en %F IJAMCS_2018_28_3_a0
Li, W.; Huang, C.; Zhai, G. Quadratic performance analysis of switched affine time-varying systems. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 3, pp. 429-440. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_3_a0/
[1] Allerhand, L.I. and Shaked, U. (2011). Robust stability and stabilization of linear switched systems with dwell time, IEEE Transactions on Automatic Control 56(2): 381–386.
[2] Bolzern, P. and Spinelli, W. (2004). Quadratic stabilization of a switched affine system about a nonequilibrium point, Proceedings of the American Control Conference, Boston, MA, USA, pp. 3890–3895.
[3] Branicky, M.S. (1998). Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Transactions on Automatic Control 43(4): 475–482.
[4] Deaecto, G.S. (2016). Dynamic output feedback H∞ control of continuous-time switched affine systems, Automatica 71(1): 44–49.
[5] Deaecto, G.S. and Santos, G.C. (2015). State feedback H∞ control design of continuous-time switched affine systems, IET Control Theory Applications 9(10): 1511–1516.
[6] DeCarlo, R., Branicky, M.S., Pettersson, S. and Lennartson, B. (2000). Perspectives and results on the stability and stabilizability of hybrid systems, Proceedings of the IEEE 88(7): 1069–1082.
[7] Feron, E. (1996). Quadratic stability of switched systems via state and output feedback, MIT Technical Reports CICSP-468, MIT, Cambridge, MA.
[8] Hetel, L. and Fridman, E. (2013). Robust sampled-data control of switched affine systems, IEEE Transactions on Automatic Control 58(11): 2922–2928.
[9] Leth, J. and Wisniewski, R. (2014). Local analysis of hybrid systems on polyhedral sets with state-dependent switching, International Journal of Applied Mathematics and Computer Science 24(2): 341–355, DOI: 10.2478/amcs-2014-0026.
[10] Liberzon, D. (2003). Switching in Systems and Control, Birkhäuser, Boston, MA.
[11] Liberzon, D. and Morse, A.S. (1999). Basic problems in stability and design of switched systems, IEEE Control Systems Magazine 19(5): 59–70.
[12] Luis-Delgado, J.D., Al-Hadithi, B.M. and Jiménez, A. (2017). A novel method for the design of switching surfaces for discretized MIMO nonlinear systems, International Journal of Applied Mathematics and Computer Science 27(1): 5–17, DOI: 10.1515/amcs-2017-0001.
[13] Packard, A. (1994). Gain scheduling via linear fractional transformation, Systems Control Letters 22(2): 79–92.
[14] Pettersson, S. and Lennartson, B. (2002). Hybrid system stability and robustness verification using linear matrix–inequalities, International Journal of Control 75(16–17): 1335–1355.
[15] Scharlau, C.C., de Oliveira, M.C., Trofino, A. and Dezuo, T.J.M. (2014). Switching rule design for affine switched systems using a max-type composition rule, Systems Control Letters 68(1): 1–8.
[16] Skelton, R.E., Iwasaki, T. and Grigoriadis, K.M. (1998). A Unified Algebraic Approach to Linear Control Design, Taylor Francis, London.
[17] Sun, Z. and Ge, S.S. (2005). Switched Linear Systems: Control and Design, Springer, London.
[18] Trofino, A., Assmann, D., Scharlau, C.C. and Coutinho, D.F. (2009). Switching rule design for switched dynamic systems with affine vector fields, IEEE Transactions on Automatic Control 54(9): 2215–2222.
[19] van der Schaft, A. and Schumacher, H. (2000). An Introduction to Hybrid Dynamical Systems, Springer, London.
[20] Wicks, M.A., Peleties, P. and DeCarlo, R. A. (1998). Switched controller design for the quadratic stabilization of a pair of unstable linear systems, European Journal of Control 4(2): 140–147.
[21] Xiang, W. (2016). Necessary and sufficient condition for stability of switched uncertain linear systems under dwell-time constraint, IEEE Transactions on Automatic Control 61(11): 3619–3624.
[22] Xiang, W. and Xiao, J. (2014). Stabilization of switched continuous-time systems with all modes unstable via dwell time switching, Automatica 50(3): 940–945.
[23] Xiang, Z., Wang, R. and Chen, Q. (2010). Fault tolerant control of switched nonlinear systems with time delay under asynchronous switching, International Journal of Applied Mathematics and Computer Science 20(3): 497–506, DOI: 10.2478/v10006-010-0036-0.
[24] Xu, X. and Zhai, G. (2005). Practical stability and stabilization of hybrid and switched systems, IEEE Transactions on Automatic Control 50(11): 1897–1903.
[25] Xu, X., Zhai, G. and He, S. (2008). On practical asymptotic stabilizability of switched affine systems, Nonlinear Analysis: Hybrid Systems 2(1): 196–208.
[26] Yoshimura, V.L., Assuncao, E., da Silva, E.R.P., Teixeira, M.C.M. and Mainardi Jr., E.I. (2013). Observer-based control design for switched affine systems and applications to DC-DC converters, Journal of Control, Automation and Electrical Systems 24(4): 535–543.
[27] Zhai, G. (2001). Quadratic stabilizability of discrete-time switched systems via state and output feedback, Proceedings of the Conference on Decision and Control, Orlando, Florida, FL, USA, pp. 2165–2166.
[28] Zhai, G. (2012). Quadratic stabilizability and H∞ disturbance attenuation of switched linear systems via state and output feedback, Proceedings of the Conference on Decision and Control, Maui, HI, USA, pp. 1935–1940.
[29] Zhai, G. (2015). A generalization of the graph Laplacian with application to a distributed consensus algorithm, International Journal of Applied Mathematics and Computer Science 25(2): 353–360, DOI: 10.1515/amcs-2015-0027.
[30] Zhai, G., Hu, B., Yasuda, K. and Michel, A.N. (2001). Disturbance attenuation properties of time-controlled switched systems, Journal of The Franklin Institute 338(7): 765–779.
[31] Zhai, G. and Huang, C. (2015). A note on basic consensus problems in multi-agent systems with switching interconnection graphs, International Journal of Control 88(3): 631–639.
[32] Zhai, G., Lin, H. and Antsaklis, P.J. (2003). Quadratic stabilizability of switched linear systems with polytopic uncertainties, International Journal of Control 76(7): 747–753.
[33] Zhai, G., Xu, X., Lin, H. and Liu, D. (2007). Extended Lie algebraic stability analysis for switched systems with continuous-time and discrete-time subsystems, International Journal of Applied Mathematics and Computer Science 17(4): 447–454, DOI: 10.2478/v100006-007-0036-x.