Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_2_a9, author = {Liu, H. and Zhong, M. and Yang, R.}, title = {Simultaneous disturbance compensation and {H|||sub\protect\emph{/sub|||/H\protect\textsubscript{\ensuremath{\infty}}} optimization in fault detection of {UAVs}}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {349--362}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a9/} }
TY - JOUR AU - Liu, H. AU - Zhong, M. AU - Yang, R. TI - Simultaneous disturbance compensation and Hi/H∞ optimization in fault detection of UAVs JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 349 EP - 362 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a9/ LA - en ID - IJAMCS_2018_28_2_a9 ER -
%0 Journal Article %A Liu, H. %A Zhong, M. %A Yang, R. %T Simultaneous disturbance compensation and Hi/H∞ optimization in fault detection of UAVs %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 349-362 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a9/ %G en %F IJAMCS_2018_28_2_a9
Liu, H.; Zhong, M.; Yang, R. Simultaneous disturbance compensation and Hi/H∞ optimization in fault detection of UAVs. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 2, pp. 349-362. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a9/
[1] Bateman, F., Noura, H. and Ouladsine, M. (2011). Fault diagnosis and fault-tolerant control strategy for the aerosonde UAV, IEEE Transactions on Aerospace and Electronic Systems 47(3): 2119–2137.
[2] Boulkroune, B., Halabi, S. and Zemouche, A. (2013). H−/H∞ fault detection filter for a class of nonlinear descriptor systems, International Journal of Control 86(2): 253–262.
[3] Caliskan, F., Zhang, Y.,Wu, N.E. and Shin, J.Y. (2014). Actuator fault diagnosis in a Boeing 747 model via adaptive modified two-stage Kalman filter, International Journal of Aerospace Engineering 2014: 1–10.
[4] Cen, Z., Noura, H. and Younes, Y.A. (2015). Systematic fault tolerant control based on adaptive Thau observer estimation for quadrotor UAVs, International Journal of Applied Mathematics and Computer Science 25(1): 159–174, DOI: 10.1515/amcs-2015-0012.
[5] Chabir, K., Sid, M.A. and Sauter, D. (2014). Fault diagnosis in a networked control system under communication constraints: A quadrotor application, International Journal of Applied Mathematics and Computer Science 24(4): 809–820, DOI: 10.2478/amcs-2014-0060.
[6] Cho, A., Kim, J., Lee, S. and Kee, C. (2011). Wind estimation and airspeed calibration using an UAV with a single-antenna GPS receiver and pitot tube, IEEE Transactions on Aerospace and Electronic Systmes 47(1): 109–117.
[7] Ding, S.X. (2013). Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools, Springer, Berlin.
[8] Ding, S.X., Jeinsch, T., Frank, P.M. and Ding, E.L. (2000). A unified approach to the optimization of fault detection systems, International Journal of Adaptive Control and Signal Processing 14(7): 725–745.
[9] Ducard, G. and Geering, H.P. (2008). Efficient nonlinear actuator fault detection and isolation system for unmanned aerial vehicles, Journal of Guidance, Control, and Dynamics 31(1): 225–237.
[10] Freeman, P., Pandita, R., Srivastava, N. and Balas, G.J. (2013). Model-based and data-driven fault detection performance for a small UAV, IEEE/ASME Transactions on Mechatronics 18(4): 1300–1309.
[11] Frost, W. and Bowles, R.L. (1984). Wind shear terms in the equations of aircraft motion, Journal of Aircraft 21(11): 866–872.
[12] Guo, L. and Cao, S. (2014). Anti-disturbance control theory for systems with multiple disturbances: A survey, ISA Transactions 53(4): 846–849.
[13] Hajiyev, C. (2013). Two-stage Kalman filter-based actuator/surface fault identification and reconfigurable control applied to F-16 fighter dynamics, International Journal of Adaptive Control and Signal Processing 27(9): 755–770.
[14] Hassanabadi, A.H., Shafiee, M. and Puig, V. (2016). Robust fault detection of singular LPV systems with multiple time-varying delays, International Journal of Applied Mathematics and Computer Science 26(1): 45–61, DOI: 10.1515/amcs-2016-0004.
[15] Henry, D., Cieslak, J., Zolghadri, A. and Efimov, D. (2015). H∞/H− LPV solutions for fault detection of aircraft actuator faults: Bridging the gap between theory and practice, International Journal of Robust and Nonlinear Control 25(5): 649–672.
[16] Khan, A.Q., Abid, M. and Ding, S.X. (2014). Fault detection filter design for discrete-time nonlinear systems—A mixed H−/H∞ optimization, Systems Control Letters 67(1): 46–54.
[17] Langelaan, J.W., Alley, N. and Neidhoefer, J. (2011). Wind field estimation for small unmanned aerial vehicles, Journal of Guidance, Control, and Dynamics 34(4): 1016–1030.
[18] Lee, J.H., Sevil, H.E., Dogan, A. and Hullender, D. (2014). Estimation of receiver aircraft states and wind vectors in aerial refueling, Journal of Guidance, Control, and Dynamics 37(1): 265–276.
[19] Li, X., Liu, H.H.T. and Jiang, B. (2015). Parametrization of optimal fault detection filters, Automatica 56: 70–77.
[20] Lu, P., Eykeren, L.V., Kampen, E.V. and Chu, Q.P. (2015). Selective-reinitialization multiple-model adaptive estimation for fault detection and diagnosis, Journal of Guidance, Control, and Dynamics 38(8): 1409–1424.
[21] Lu, P., Kampen, E.V., Visser, C.D. and Chu, Q.P. (2016). Nonlinear aircraft sensor fault reconstruction in the presence of disturbances validated by realflight data, Control Engineering Practice 49: 112–128.
[22] Mangoubi, R.S. (1998). Robust Estimation and Failure Detection: A Concise Treatment, Springer, London.
[23] Mulgund, S.S. and Stengels, R.F. (1996). Optimal nonlinear estimation for aircraft flight control in wind shear, Automatica 32(1): 3–13.
[24] Nicotra, M.M., Naldi, R. and Garone, E. (2017). Nonlinear control of a tethered UAV: The taut cable case, Automatica 78: 174–184.
[25] Péni, T., Vanek, B., Szabó, Z. and Bokor, J. (2015). Supervisory fault tolerant control of the GTM UAV using LPV methods, International Journal of Applied Mathematics and Computer Science 25(1): 117–131, DOI: 10.1515/amcs-2015-0009.
[26] Pereira, P.O., Cunha, R., Cabecinhas, D., Silvestre, C. and Oliveira, P. (2017). Leader following trajectory planning: A trailer-like approach, Automatica 75: 77–87.
[27] Rodriguez-Alfaro, L.H., Alcorta-Garcia, E., Lara, D. and Romero, G. (2015). A Hamiltonian approach to fault isolation in a planar vertical take-off and landing aircraft model, International Journal of Applied Mathematics and Computer Science 25(1): 65–76, DOI: 10.1515/amcs-2015-0005.
[28] Rosa, P. and Silvestre, C. (2013). Fault detection and isolation of LPV systems using set-valued observers: An application to a fixed-wing aircraft, Control Engineering Practice 21(3): 242–252.
[29] Tanaka, N. and Suzuki, S. (2006). Restructurable guidance and control for aircraft with failures considering gust effects, Journal of Guidance, Control, and Dynamics 29(3): 671–679.
[30] University of Minnesota (2012). UAV research group, University of Minnesota, Minneapolis, MN, http://www.uav.aem.umn.edu/.
[31] Wu, C., Qi, J., Song, D., Qi, X. and Han, J. (2015). Simultaneous state and parameter estimation based actuator fault detection and diagnosis for an unmanned helicopter, International Journal of Applied Mathematics and Computer Science 25(1): 175–187, DOI: 10.1515/amcs-2015-0013.
[32] Xu, F., Puig, V., Ocampo-Martinez, C., Olaru, S. and Niculescu, S.-I. (2017). Robust MPC for actuator fault tolerance using set-based passive fault detection and active fault isolation, International Journal of Applied Mathematics and Computer Science 27(1): 43–61, DOI: 10.1515/amcs-2017-0004.
[33] Zhao, S. and Huang, B. (2017). Iterative residual generator for fault detection with linear time-invariant state-space models, IEEE Transactions on Automatic Control 62(10): 5422–5428.
[34] Zhong, M., Ding, S.X. and Ding, E.L. (2010). Optimal fault detection for linear discrete time-varying systems, Automatica 46(8): 1395–1400.
[35] Zhong, M., Ding, S.X. and Zhou, D. (2016a). A new scheme of fault detection for linear discrete time-varying systems, IEEE Transactions on Automatic Control 61(9): 2597–2602.
[36] Zhong, M., Guo, J., Guo, D. and Yang, Z. (2016b). An extended Hi/H∞ optimization approach to fault detection of INS/GPS-Integrated system, IEEE Transactions on Instrumentation and Measurement 65(11): 2495–2504.
[37] Zhong, M., Liu, H. and Song, N.F. (2015). On designing an extended H−/H∞-FDF for a class of nonlinear systems, Proceedings of the 9th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2015, Paris, France, pp. 707–712.
[38] Zhong, M., Zhang, L., Ding, S.X. and Zhou, D. (2017). A probabilistic approach to robust fault detection for a class of nonlinear systems, IEEE Transactions on Industrial Electronics 64(5): 3930–3939.