Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_2_a7, author = {Kaczorek, T.}, title = {Analysis of positive linear continuous-time systems using the conformable derivative}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {335--340}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a7/} }
TY - JOUR AU - Kaczorek, T. TI - Analysis of positive linear continuous-time systems using the conformable derivative JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 335 EP - 340 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a7/ LA - en ID - IJAMCS_2018_28_2_a7 ER -
%0 Journal Article %A Kaczorek, T. %T Analysis of positive linear continuous-time systems using the conformable derivative %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 335-340 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a7/ %G en %F IJAMCS_2018_28_2_a7
Kaczorek, T. Analysis of positive linear continuous-time systems using the conformable derivative. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 2, pp. 335-340. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a7/
[1] Abdeljawad, T. (2015). On conformable fractional calculus, Journal of Computational and Applied Mathematics 279: 57–66.
[2] Benvenuti, L. and Farina, L. (2004). A tutorial on the positive realization problem, IEEE Transactions on Automatic Control 49(5): 651–664.
[3] Farina, L. and Rinaldi, S. (2000). Positive Linear Systems, Theory and Applications, Wiley, New York, NY.
[4] Kaczorek, T. (2016a). Minimal-phase positive electrical circuits, Electrical Review 92(3): 182–189.
[5] Kaczorek, T. (2016b). Positive electrical circuits with zero transfer matrices and their discretization, Computer Applications in Electrical Engineering 14: 1–13.
[6] Kaczorek, T. (2015a). A class of positive and stable time-varying electrical circuits, Electrical Review 91(5): 121–124.
[7] Kaczorek, T. (2015b). Normal positive electrical circuits, IET Circuits Theory and Applications 9(5): 691–699.
[8] Kaczorek, T. (2014). Decoupling zeros of positive continuous-time linear systems and electrical circuits, in J. Świątek et al. (Eds.), Advances in Systems Science, Springer, Cham, pp. 1–15.
[9] Kaczorek, T. (2013a). Constructability and observability of standard and positive electrical circuits, Electrical Review 89(7): 132–136.
[10] Kaczorek, T. (2013b). Positive fractional linear electrical circuits, Proceedings of SPIE 8903, Art. No. 3903-35.
[11] Kaczorek, T. (2013c). Zeroing of state variables in descriptor electrical circuits by state-feedbacks, Electrical Review 89(10): 200–203.
[12] Kaczorek, T. (2012). Positive unstable electrical circuits, Electrical Review 88(5a): 187–192.
[13] Kaczorek, T. (2011a). Positive electrical circuits and their reachability, Archives of Electrical Engineering 60(3): 283–301.
[14] Kaczorek, T. (2011b). Positive systems consisting of n subsystems with different fractional orders, IEEE Transactions on Circuits and Systems 58(6): 1203–1210.
[15] Kaczorek, T. (2011c). Selected Problems of Fractional Systems Theory, Springer, Berlin.
[16] Kaczorek, T. (2010). Positive linear systems with different fractional orders, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(3): 453–458.
[17] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer, London.
[18] Kaczorek, T. and Rogowski, K. (2015). Fractional Linear Systems and Electrical Circuits, Studies in Systems, Decision and Control, Vol. 13, Springer, Berlin.
[19] Khalil R., Al Horani M., Yousef A., Sababheh M. (2014). A new definition of fractional derivative, Journal of Computational and Applied Mathematics 264: 65–70.