Analysis of positive linear continuous-time systems using the conformable derivative
International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 2, pp. 335-340.

Voir la notice de l'article provenant de la source Library of Science

Positive linear continuous-time systems are analyzed via conformable fractional calculus. A solution to a fractional linear system is derived. Necessary and sufficient conditions for the positivity of linear systems are established. Necessary and sufficient conditions for the asymptotic stability of positive linear systems are also given. The solutions of positive fractional linear systems based on the Caputo and conformable definitions are compared.
Keywords: conformable fractional derivative, positive linear system, system stability
Mots-clés : pochodna ułamkowa, układ liniowy dodatni, stabilność systemu
@article{IJAMCS_2018_28_2_a7,
     author = {Kaczorek, T.},
     title = {Analysis of positive linear continuous-time systems using the conformable derivative},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {335--340},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a7/}
}
TY  - JOUR
AU  - Kaczorek, T.
TI  - Analysis of positive linear continuous-time systems using the conformable derivative
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2018
SP  - 335
EP  - 340
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a7/
LA  - en
ID  - IJAMCS_2018_28_2_a7
ER  - 
%0 Journal Article
%A Kaczorek, T.
%T Analysis of positive linear continuous-time systems using the conformable derivative
%J International Journal of Applied Mathematics and Computer Science
%D 2018
%P 335-340
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a7/
%G en
%F IJAMCS_2018_28_2_a7
Kaczorek, T. Analysis of positive linear continuous-time systems using the conformable derivative. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 2, pp. 335-340. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a7/

[1] Abdeljawad, T. (2015). On conformable fractional calculus, Journal of Computational and Applied Mathematics 279: 57–66.

[2] Benvenuti, L. and Farina, L. (2004). A tutorial on the positive realization problem, IEEE Transactions on Automatic Control 49(5): 651–664.

[3] Farina, L. and Rinaldi, S. (2000). Positive Linear Systems, Theory and Applications, Wiley, New York, NY.

[4] Kaczorek, T. (2016a). Minimal-phase positive electrical circuits, Electrical Review 92(3): 182–189.

[5] Kaczorek, T. (2016b). Positive electrical circuits with zero transfer matrices and their discretization, Computer Applications in Electrical Engineering 14: 1–13.

[6] Kaczorek, T. (2015a). A class of positive and stable time-varying electrical circuits, Electrical Review 91(5): 121–124.

[7] Kaczorek, T. (2015b). Normal positive electrical circuits, IET Circuits Theory and Applications 9(5): 691–699.

[8] Kaczorek, T. (2014). Decoupling zeros of positive continuous-time linear systems and electrical circuits, in J. Świątek et al. (Eds.), Advances in Systems Science, Springer, Cham, pp. 1–15.

[9] Kaczorek, T. (2013a). Constructability and observability of standard and positive electrical circuits, Electrical Review 89(7): 132–136.

[10] Kaczorek, T. (2013b). Positive fractional linear electrical circuits, Proceedings of SPIE 8903, Art. No. 3903-35.

[11] Kaczorek, T. (2013c). Zeroing of state variables in descriptor electrical circuits by state-feedbacks, Electrical Review 89(10): 200–203.

[12] Kaczorek, T. (2012). Positive unstable electrical circuits, Electrical Review 88(5a): 187–192.

[13] Kaczorek, T. (2011a). Positive electrical circuits and their reachability, Archives of Electrical Engineering 60(3): 283–301.

[14] Kaczorek, T. (2011b). Positive systems consisting of n subsystems with different fractional orders, IEEE Transactions on Circuits and Systems 58(6): 1203–1210.

[15] Kaczorek, T. (2011c). Selected Problems of Fractional Systems Theory, Springer, Berlin.

[16] Kaczorek, T. (2010). Positive linear systems with different fractional orders, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(3): 453–458.

[17] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer, London.

[18] Kaczorek, T. and Rogowski, K. (2015). Fractional Linear Systems and Electrical Circuits, Studies in Systems, Decision and Control, Vol. 13, Springer, Berlin.

[19] Khalil R., Al Horani M., Yousef A., Sababheh M. (2014). A new definition of fractional derivative, Journal of Computational and Applied Mathematics 264: 65–70.