Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_2_a4, author = {Pazera, M. and Buciakowski, M. and Witczak, M.}, title = {Robust multiple sensor fault-tolerant control for dynamic non-linear systems: {Application} to the aerodynamical twin-rotor system}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {297--308}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a4/} }
TY - JOUR AU - Pazera, M. AU - Buciakowski, M. AU - Witczak, M. TI - Robust multiple sensor fault-tolerant control for dynamic non-linear systems: Application to the aerodynamical twin-rotor system JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 297 EP - 308 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a4/ LA - en ID - IJAMCS_2018_28_2_a4 ER -
%0 Journal Article %A Pazera, M. %A Buciakowski, M. %A Witczak, M. %T Robust multiple sensor fault-tolerant control for dynamic non-linear systems: Application to the aerodynamical twin-rotor system %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 297-308 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a4/ %G en %F IJAMCS_2018_28_2_a4
Pazera, M.; Buciakowski, M.; Witczak, M. Robust multiple sensor fault-tolerant control for dynamic non-linear systems: Application to the aerodynamical twin-rotor system. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 2, pp. 297-308. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a4/
[1] Aouaouda, S. Chadli, M., Shi, P. and Karimi, H. (2015). Discrete-time H /H-inf sensor fault detection observer design for nonlinear systems with parameter uncertainty, International Journal of Robust and Nonlinear Control 25(3): 339–361.
[2] Byrski, J. and Byrski, W. (2016). A double window state observer for detection and isolation of abrupt changes in parameters, International Journal of Applied Mathematics and Computer Science 26(3): 585–602, DOI: 10.1515/amcs-2016-0041.
[3] Cai, J., Ferdowsi, H. and Sarangapani, J. (2016). Model-based fault detection, estimation, and prediction for a class of linear distributed parameter systems, Automatica 66: 122–131.
[4] de Oliveira, M.C., Bernussou, J. and Geromel, J.C. (1999). A new discrete-time robust stability condition, Systems Control Letters 37(4): 261–265.
[5] Defoort, M., Veluvolu, K. and Rath, J.and Djemai, M. (2016). Adaptive sensor and actuator fault estimation for a class of uncertain Lipschitz nonlinear systems, International Journal of Adaptive Control and Signal Processing 30(2): 271–283.
[6] Foo, G., Zhang, X. and Vilathgamuwa, M. (2013). A sensor fault detection and isolation method in interior permanent-magnet synchronous motor drives based on an extended Kalman filter, IEEE Transactions on Industrial Electronics 60(8): 3485–3495.
[7] Ha, Q.P. and Trinh, H. (2004). State and input simultaneous estimation for a class of nonlinear systems, Automatica 40(10): 1779–1785.
[8] He, Q. and Liu, J. (2014). Sliding mode observer for a class of globally Lipschitz non-linear systems with time-varying delay and noise in its output, IET Control Theory Applications 8(14): 1328–1336.
[9] Isermann, R. (2011). Fault-Diagnosis Applications. Model-Based Condition Monitoring: Actuators, Drives, Machinery, Plants, Sensors, and Fault-Tolerant Systems, Springer, Berlin/Heidelberg.
[10] Khalil, H. and Praly, L. (2014). High-gain observers in nonlinear feedback control, International Journal of Robust and Nonlinear Control 24(6): 993–1015.
[11] Li, H. and Fu, M. (1997). A linear matrix inequality approach to robust H∞ filtering, IEEE Transactions on Signal Processing 45(9): 2338–2350.
[12] Li, L., Yang, Y., Zhang, Y. and Ding, S. (2014). Fault estimation of one-sided Lipschitz and quasi-one-sided Lipschitz systems, 33rd Chinese Control Conference (CCC), Nanjing, China, pp. 2574–2579.
[13] Löfberg, J. (2004). YALMIP: A toolbox for modeling and optimization in Matlab, Proceedings of the CACSD Conference, New Orleans, LA, USA, pp. 284–289.
[14] López-Estrada, F.-R., Ponsart, J.-C., Theilliol, D., Astorga-Zaragoza, C.-M., and Camas-Anzueto, J.-L. (2015). Robust sensor fault estimation for descriptor-LPV systems with unmeasurable gain scheduling functions: Application to an anaerobic bioreactor, International Journal of Applied Mathematics and Computer Science 25(2): 233–244, DOI: 10.1515/amcs-2015-0018.
[15] Mahmoud, M., Jiang, J. and Zhang, Y. (2003). Active Fault Tolerant Control Systems: Stochastic Analysis and Synthesis, Springer, Berlin/Heidelberg.
[16] Majdzik, P., Akielaszek-Witczak, A., Seybold, L., Stetter, R. and Mrugalska, B. (2016). A fault-tolerant approach to the control of a battery assembly system, Control Engineering Practice 55: 139–148.
[17] Mrugalski, M. (2014). Advanced Neural Network-based Computational Schemes for Robust Fault Diagnosis, Springer, Berlin/Heidelberg.
[18] Nguyen, M.C. and Trinh, H. (2016a). Reduced-order observer design for one-sided Lipschitz time-delay systems subject to unknown inputs, IET Control Theory Applications 10(10): 1097–1105.
[19] Nguyen, M.C. and Trinh, H. (2016b). Unknown input observer design for one-sided Lipschitz discrete-time systems subject to time-delay, Applied Mathematics and Computation 286: 57–71.
[20] Pourbabaee, B., Meskin, N. and Khorasani, K. (2016). Sensor fault detection, isolation, and identification using multiple-model-based hybrid Kalman filter for gas turbine engines, IEEE Transactions on Control Systems Technology 24(4): 1184–1200.
[21] Rotondo, D., Nejjari, F. and Puig, V. (2013). Quasi-LPV modeling, identification and control of a twin rotor MIMO system, Control Engineering Practice 21(6): 829–846.
[22] Seron, M.M. and De Doná, J.A. (2015). Robust fault estimation and compensation for LPV systems under actuator and sensor faults, Automatica 52: 294–301.
[23] Seybold, L., Witczak, M., Majdzik, P. and Stetter, R. (2015). Towards robust predictive fault-tolerant control for a battery assembly system, International Journal of Applied Mathematics and Computer Science 25(4): 849–862, DOI: 10.1515/amcs-2015-0061.
[24] Song, J. and He, S. (2015). Robust finite-time H-inf control for one-sided Lipschitz nonlinear systems via state feedback and output feedback, Journal of the Franklin Institute 352(8): 3250–3266.
[25] Tabatabaeipour, S.M. and Bak, T. (2014). Robust observer-based fault estimation and accommodation of discrete-time piecewise linear systems, Journal of the Franklin Institute 351(1): 277–295.
[26] Witczak, M. (2014). Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems: Analytical and Soft Computing Approaches, Springer, Heidelberg.
[27] Witczak, M., Buciakowski, M., Puig, V., Rotondo, D. and Nejjari, F. (2015). An LMI approach to robust fault estimation for a class of nonlinear systems, International Journal of Robust and Nonlinear Control 26(7): 1530–1548.
[28] Zemouche, A. and Boutayeb, M. (2006). Observer design for Lipschitz non-linear systems: The discrete time case, IEEE Transactions on Circuits and Systems 53(8): 777–781.
[29] Zemouche, A., Boutayeb, M. and Bara, G.I. (2008). Observers for a class of Lipschitz systems with extension to H∞ performance analysis, Systems Control Letters 57(1): 18–27.
[30] Zhang, J., Swain, A. and Nguang, S. (2014a). Robust H-inf adaptive descriptor observer design for fault estimation of uncertain nonlinear systems, Journal of the Franklin Institute 351(11): 5162–5181.
[31] Zhang,W., Su, H., Su, S. and Wang, D. (2014b). Nonlinear H-inf observer design for one-sided Lipschitz systems, Neurocomputing 145: 505–511.
[32] Zhang, W., Su, H., Zhu, F. and Azar, G. (2015). Unknown input observer design for one-sided Lipschitz nonlinear systems, Nonlinear Dynamics 79(2): 1469–1479.