Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_2_a11, author = {Jiang, T. and Ammar, S. I. and Chang, B. and Liu, L.}, title = {Analysis of an {N-policy} {GI/M/1} queue in a multi-phase service environment with disasters}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {375--386}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a11/} }
TY - JOUR AU - Jiang, T. AU - Ammar, S. I. AU - Chang, B. AU - Liu, L. TI - Analysis of an N-policy GI/M/1 queue in a multi-phase service environment with disasters JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 375 EP - 386 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a11/ LA - en ID - IJAMCS_2018_28_2_a11 ER -
%0 Journal Article %A Jiang, T. %A Ammar, S. I. %A Chang, B. %A Liu, L. %T Analysis of an N-policy GI/M/1 queue in a multi-phase service environment with disasters %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 375-386 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a11/ %G en %F IJAMCS_2018_28_2_a11
Jiang, T.; Ammar, S. I.; Chang, B.; Liu, L. Analysis of an N-policy GI/M/1 queue in a multi-phase service environment with disasters. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 2, pp. 375-386. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a11/
[1] Artalejo, J.R. and Gómez-Corral, A. (1998). Analysis of a stochastic clearing system with repeated attempts, Stochastic Models 14(3): 623–645.
[2] Atencia, I. (2014). A discrete-time system with service control and repairs, International Journal of Applied Mathematics and Computer Science 24(3): 471–484, DOI: 10.2478/amcs-2014-0035.
[3] Atencia, I. (2016). A discrete-time queueing system with changes in the vacation times, International Journal of Applied Mathematics and Computer Science 26(2): 379–390, DOI: 10.1515/amcs-2016-0027.
[4] Atencia, I. and Moreno, P. (2004). The discrete-time Geo/Geo/1 queue with negative customers and disasters, Computers Operations Research 31(9): 1537–1548.
[5] Boudali, O. and Economou, A. (2012). Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes, European Journal of Operational Research 218(3): 708–715.
[6] Boudali, O. and Economou, A. (2013). The effect of catastrophes on the strategic customer behavior in queueing systems, Naval Research Logistics 60(7): 571–587.
[7] Cohen, J.W. (1982). The Single Server Queue, North-Holland, Amsterdam.
[8] Dimou, S. and Economou, A. (2013). The single server queue with catastrophes and geometric reneging, Methodology and Computing in Applied Probability 15(3): 595–621.
[9] Economou, A. and Fakinos, D. (2003). A continuous-time Markov chain under the influence of a regulating point process and applications, European Journal of Operational Research 149(3): 625–640.
[10] Economou, A. and Manou, A. (2013). Equilibrium balking strategies for a clearing system in alternating environment, Annals of Operations Research 208(1): 489–514.
[11] Gani, J. and Swift, R.J. (2007). Death and birth-death and immigration processes with catastrophes, Journal of Statistical Theory Practice 1(1): 39–48.
[12] Gross, D., Shortle, J.F., Thompson, J.M. and Harris, C.M. (2008). Fundamentals of Queueing Theory, 4th Edn., Wiley, Hoboken, NJ.
[13] Haviv, M. (2013). A Course in Queueing Theory, Springer, New York, NY.
[14] Jiang, T. and Liu, L. (2017). Analysis of a GI/M/1 in a multi-phase service environment with disasters, RAIRO-Operations Research 51(1): 79–100.
[15] Jiang, T., Liu, L. and Li, J. (2015). Analysis of the M/G/1 queue in multi-phase random environment with disasters, Journal of Mathematical Analysis and Applications 430(2): 857–873.
[16] Ke, J.C. (2003). The analysis of a general input queue with N policy and exponential vacations, Queueing Systems 45(2): 135–160.
[17] Ke, J.C. and Wang, K.H. (2002). A recursive method for the N policy GI/M/1 queueing system with finite capacity, European Journal of Operational Research 142(3): 577–594.
[18] Kim, B.K. and Lee, D.H. (2014). The M/G/1 queue with disasters and working breakdowns, Applied Mathematical Modelling 38(5–6): 1788–1798.
[19] Krishna Kumar, B. and Arivudainambi, D. (2000). Transient solution of an M/M/1 queue with catastrophes, Computers Mathematics with Applications 40(10–11): 1233–1240.
[20] Lee, D.H. and Yang, W.S. (2013). The N-policy of a discrete time Geo/G/1 queue with disasters and its application to wireless sensor networks, Applied Mathematical Modelling 37(23): 9722–9731.
[21] Lim, D.E., Lee, D.H., Yang, W.S. and Chae, K.C. (2013). Analysis of the GI/Geo/1 queue with N-policy, Applied Mathematical Modelling 37(7): 4643–4652.
[22] Moreno, P. (2007). A discrete-time single-server queue with a modified N-policy, International Journal of Systems Science 38(6): 483–492.
[23] Mytalas, G.C. and Zazanis,M.A. (2015). AnM[X]/G/1 queueing system with disasters and repairs under a multiple adapted vacation policy, Naval Research Logistics 62(3): 171–189.
[24] Park, H.M., Yang, W.S. and Chae, K.C. (2009). The Geo/G/1 with negative customers and disasters, Stochastic Models 25(4): 673–688.
[25] Park, H.M., Yang, W.S. and Chae, K.C. (2010). Analysis of the GI/Geo/1 queue with disasters, Stochastic Analysis and Applications 28(1): 44–53.
[26] Sudhesh, R., Priyaand, R.S. and Lenin, R.B. (2016). Analysis of N-policy queues with disastrous breakdown, TOP 24(3): 612–634.
[27] Towsley, D. and Tripathi, S.K. (1991). A single server priority queue with server failures and queue flushing, Operations Research Letter 10(6): 353–362.
[28] Yadin, M. and Naor, P. (1963). Queueing systems with a removable service station, Journal of the Operational Research Society 14(4): 393–405.
[29] Yechiali, U. (2007). Queues with system disasters and impatient customers when system is down, Queueing Systems 56(3–4): 195–202.
[30] Zhang, Z.G. and Tian, N. (2004). The N threshold policy for the GI/M/1 queue, Operations Research Letter 32(1): 77–84.