Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_2_a0, author = {Pr\"oll, S. and Lunze, J. and Jarmolowitz, F.}, title = {From structural analysis to observer-based residual generation for fault detection}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {233--245}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a0/} }
TY - JOUR AU - Pröll, S. AU - Lunze, J. AU - Jarmolowitz, F. TI - From structural analysis to observer-based residual generation for fault detection JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 233 EP - 245 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a0/ LA - en ID - IJAMCS_2018_28_2_a0 ER -
%0 Journal Article %A Pröll, S. %A Lunze, J. %A Jarmolowitz, F. %T From structural analysis to observer-based residual generation for fault detection %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 233-245 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a0/ %G en %F IJAMCS_2018_28_2_a0
Pröll, S.; Lunze, J.; Jarmolowitz, F. From structural analysis to observer-based residual generation for fault detection. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 2, pp. 233-245. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a0/
[1] Armengol, J., Bregón, A., Escobet, T., Gelso, E., Krysander, M., Nyberg, M., Olive, X., Pulido, B. and Travé-Massuyès, L. (2009). Minimal structurally overdetermined sets for residual generation: A comparison of alternative approaches, 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Barcelona, Spain, pp. 1480–1485.
[2] Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2016). Diagnosis and Fault-Tolerant Control, 3rd Edn., Springer, Berlin.
[3] Boukhobza, T., Hamelin, F. and Sauter, D. (2006). Observability of structured linear systems in descriptor form: A graph-theoretic approach, Automatica 42(4): 629–635.
[4] Boukhobza, T., Hamelin, F. and Martinez-Martinez, S. (2007). State and input observability for structured linear systems: A graph-theoretic approach, Automatica 43(7): 1204–1210.
[5] Bregon, A., Alonso-Gonzalez, C.J. and Pulido, B. (2014). Integration of simulation and state observers for online fault detection of nonlinear continuous systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems 44(12): 1553–1568.
[6] Commault, C. and Dion, J.M. (2007). Sensor location for diagnosis in linear systems: A structural analysis, IEEE Transactions on Automatic Control 52(2): 155–169.
[7] De Persis, C. and Isidori, A. (2001). A geometric approach to nonlinear fault detection and isolation, IEEE Transactions on Automatic Control 46(6): 853–865.
[8] Ding, S.X. (2013). Model-Based Fault Diagnosis Techniques, 2nd Edn., Springer, Berlin.
[9] Dulmage, A.L. and Mendelsohn, N.S. (1958). Coverings of bipartite graphs, Canadian Journal of Mathematics 10: 517–534.
[10] Frisk, E., Bregon, A., Aslund, J., Krysander, M., Pulido, B. and Biswas, G. (2012). Diagnosability analysis considering causal interpretations for differential constraints, IEEE Transactions on Systems, Man and Cybernetics A: Systems and Humans 42(5): 1216–1229.
[11] Isermann, R. (2006). Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer, Berlin.
[12] Krysander, M. (2006). Design and Analysis of Diagnosis Systems Using Structural Methods, PhD thesis, Linköpings University, Linköpings.
[13] Krysander, M. and Frisk, E. (2008). Sensor placement for fault diagnosis, IEEE Transactions on Systems, Man and Cybernetics A: Systems and Humans 38(6): 1398–1410.
[14] Krysander, M., Aslund, J. and Nyberg, M. (2008). An efficient algorithm for finding minimal overconstrained subsystems for model-based diagnosis, IEEE Transactions on Systems, Man and Cybernetics A: Systems and Humans 38(1): 197–206.
[15] Lin, C.-T. (1974). Structural controllability, IEEE Transactions on Automatic Control 19(3): 201–208.
[16] Lunze, J. (2013). Regelungstechnik 2, 7th Edn., Springer, Berlin.
[17] Lunze, J. (2017). Two methods to find analytical redundancy relations for fault diagnosis, Automatisierungstechnik 65(4): 219–232.
[18] Massoumnia, M.-A., Verghese, G.C. and Willsky, A. (1989). Failure detection and identification, IEEE Transactions on Automatic Control 34(3): 316–321.
[19] Murota, K. (1987). Systems Analysis by Graphs and Matroids, Springer, Berlin.
[20] Pothen, A. and Fan, C.-J. (1990). Computing the block triangular form of a sparse matrix, ACM Transactions on Mathematical Software 16(4): 303–324.
[21] Pröll, S., Jarmolowitz, F. and Lunze, J. (2015). Structural diagnosability analysis of switched systems, 9th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Paris, France, pp. 156–163.
[22] Reinschke, K.J. (1988). Multivariable Control, Akademie-Verlag, Berlin.
[23] Shields, R. and Pearson, J. (1976). Structural controllability of multi-input linear systems, IEEE Transactions on Automatic Control 21(2): 203–212.
[24] Svärd, C. and Nyberg, M. (2010). Residual generators for fault diagnosis using computation sequences with mixed causality applied to automotive systems, IEEE Transactions on Systems, Man and Cybernetics A: Systems and Humans 40(6): 1310–1328.