From structural analysis to observer-based residual generation for fault detection
International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 2, pp. 233-245.

Voir la notice de l'article provenant de la source Library of Science

This paper combines methods for the structural analysis of bipartite graphs with observer-based residual generation. The analysis of bipartite structure graphs leads to over-determined subsets of equations within a system model, which make it possible to compute residuals for fault detection. In observer-based diagnosis, by contrast, an observability analysis finds observable subsystems, for which residuals can be generated by state observers. This paper reveals a fundamental relationship between these two graph-theoretic approaches to diagnosability analysis and shows that for linear systems the structurally over-determined set of model equations equals the output connected part of the system. Moreover, a condition is proved which allows us to verify structural observability of a system by means of the corresponding bipartite graph. An important consequence of this result is a comprehensive approach to fault detection systems, which starts with finding the over-determined part of a given system by means of a bipartite structure graph and continues with designing an observer-based residual generator for the fault-detectable subsystem found in the first step.
Keywords: fault diagnosis, structural analysis, observer based diagnosis, diagnosability analysis
Mots-clés : diagnostyka uszkodzeń, analiza strukturalna, analiza diagnostyczna
@article{IJAMCS_2018_28_2_a0,
     author = {Pr\"oll, S. and Lunze, J. and Jarmolowitz, F.},
     title = {From structural analysis to observer-based residual generation for fault detection},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {233--245},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a0/}
}
TY  - JOUR
AU  - Pröll, S.
AU  - Lunze, J.
AU  - Jarmolowitz, F.
TI  - From structural analysis to observer-based residual generation for fault detection
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2018
SP  - 233
EP  - 245
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a0/
LA  - en
ID  - IJAMCS_2018_28_2_a0
ER  - 
%0 Journal Article
%A Pröll, S.
%A Lunze, J.
%A Jarmolowitz, F.
%T From structural analysis to observer-based residual generation for fault detection
%J International Journal of Applied Mathematics and Computer Science
%D 2018
%P 233-245
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a0/
%G en
%F IJAMCS_2018_28_2_a0
Pröll, S.; Lunze, J.; Jarmolowitz, F. From structural analysis to observer-based residual generation for fault detection. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 2, pp. 233-245. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_2_a0/

[1] Armengol, J., Bregón, A., Escobet, T., Gelso, E., Krysander, M., Nyberg, M., Olive, X., Pulido, B. and Travé-Massuyès, L. (2009). Minimal structurally overdetermined sets for residual generation: A comparison of alternative approaches, 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Barcelona, Spain, pp. 1480–1485.

[2] Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2016). Diagnosis and Fault-Tolerant Control, 3rd Edn., Springer, Berlin.

[3] Boukhobza, T., Hamelin, F. and Sauter, D. (2006). Observability of structured linear systems in descriptor form: A graph-theoretic approach, Automatica 42(4): 629–635.

[4] Boukhobza, T., Hamelin, F. and Martinez-Martinez, S. (2007). State and input observability for structured linear systems: A graph-theoretic approach, Automatica 43(7): 1204–1210.

[5] Bregon, A., Alonso-Gonzalez, C.J. and Pulido, B. (2014). Integration of simulation and state observers for online fault detection of nonlinear continuous systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems 44(12): 1553–1568.

[6] Commault, C. and Dion, J.M. (2007). Sensor location for diagnosis in linear systems: A structural analysis, IEEE Transactions on Automatic Control 52(2): 155–169.

[7] De Persis, C. and Isidori, A. (2001). A geometric approach to nonlinear fault detection and isolation, IEEE Transactions on Automatic Control 46(6): 853–865.

[8] Ding, S.X. (2013). Model-Based Fault Diagnosis Techniques, 2nd Edn., Springer, Berlin.

[9] Dulmage, A.L. and Mendelsohn, N.S. (1958). Coverings of bipartite graphs, Canadian Journal of Mathematics 10: 517–534.

[10] Frisk, E., Bregon, A., Aslund, J., Krysander, M., Pulido, B. and Biswas, G. (2012). Diagnosability analysis considering causal interpretations for differential constraints, IEEE Transactions on Systems, Man and Cybernetics A: Systems and Humans 42(5): 1216–1229.

[11] Isermann, R. (2006). Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer, Berlin.

[12] Krysander, M. (2006). Design and Analysis of Diagnosis Systems Using Structural Methods, PhD thesis, Linköpings University, Linköpings.

[13] Krysander, M. and Frisk, E. (2008). Sensor placement for fault diagnosis, IEEE Transactions on Systems, Man and Cybernetics A: Systems and Humans 38(6): 1398–1410.

[14] Krysander, M., Aslund, J. and Nyberg, M. (2008). An efficient algorithm for finding minimal overconstrained subsystems for model-based diagnosis, IEEE Transactions on Systems, Man and Cybernetics A: Systems and Humans 38(1): 197–206.

[15] Lin, C.-T. (1974). Structural controllability, IEEE Transactions on Automatic Control 19(3): 201–208.

[16] Lunze, J. (2013). Regelungstechnik 2, 7th Edn., Springer, Berlin.

[17] Lunze, J. (2017). Two methods to find analytical redundancy relations for fault diagnosis, Automatisierungstechnik 65(4): 219–232.

[18] Massoumnia, M.-A., Verghese, G.C. and Willsky, A. (1989). Failure detection and identification, IEEE Transactions on Automatic Control 34(3): 316–321.

[19] Murota, K. (1987). Systems Analysis by Graphs and Matroids, Springer, Berlin.

[20] Pothen, A. and Fan, C.-J. (1990). Computing the block triangular form of a sparse matrix, ACM Transactions on Mathematical Software 16(4): 303–324.

[21] Pröll, S., Jarmolowitz, F. and Lunze, J. (2015). Structural diagnosability analysis of switched systems, 9th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Paris, France, pp. 156–163.

[22] Reinschke, K.J. (1988). Multivariable Control, Akademie-Verlag, Berlin.

[23] Shields, R. and Pearson, J. (1976). Structural controllability of multi-input linear systems, IEEE Transactions on Automatic Control 21(2): 203–212.

[24] Svärd, C. and Nyberg, M. (2010). Residual generators for fault diagnosis using computation sequences with mixed causality applied to automotive systems, IEEE Transactions on Systems, Man and Cybernetics A: Systems and Humans 40(6): 1310–1328.