Boundary controllability of nonlinear stochastic fractional systems in Hilbert spaces
International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 1, pp. 123-133.

Voir la notice de l'article provenant de la source Library of Science

Sufficient conditions for the controllability of nonlinear stochastic fractional boundary control systems are established. The equivalent integral equations are derived for both linear and nonlinear systems, and the control function is given in terms of the pseudoinverse operator. The Banach contraction mapping theorem is used to obtain the result. A controllability result for nonlinear stochastic fractional integrodifferential systems is also attained. Examples are included to illustrate the theory.
Keywords: boundary controllability, stochastic fractional system, pseudoinverse, integrodifferential system
Mots-clés : sterowanie graniczne, układ ułamkowy, układ stochastyczny, macierz pseudoodwrotna
@article{IJAMCS_2018_28_1_a8,
     author = {Mabel Lizzy, R. and Balachandran, K.},
     title = {Boundary controllability of nonlinear stochastic fractional systems in {Hilbert} spaces},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {123--133},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a8/}
}
TY  - JOUR
AU  - Mabel Lizzy, R.
AU  - Balachandran, K.
TI  - Boundary controllability of nonlinear stochastic fractional systems in Hilbert spaces
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2018
SP  - 123
EP  - 133
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a8/
LA  - en
ID  - IJAMCS_2018_28_1_a8
ER  - 
%0 Journal Article
%A Mabel Lizzy, R.
%A Balachandran, K.
%T Boundary controllability of nonlinear stochastic fractional systems in Hilbert spaces
%J International Journal of Applied Mathematics and Computer Science
%D 2018
%P 123-133
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a8/
%G en
%F IJAMCS_2018_28_1_a8
Mabel Lizzy, R.; Balachandran, K. Boundary controllability of nonlinear stochastic fractional systems in Hilbert spaces. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 1, pp. 123-133. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a8/

[1] Balachandran, K. and Anandhi, E.R. (2001). Boundary controllability of integrodifferential systems in Banach spaces, Proceedings of the Indian Academy of Sciences (Mathematical Sciences) 111(1): 127–135, DOI: 10.1007/BF02829544.

[2] Balachandran, K. and Divya, S. (2014). Controllability of nonlinear implicit fractional integrodifferential systems, International Journal of Applied Mathematics and Computer Science 24(4): 713–722, DOI: 10.2478/amcs-2014-0052.

[3] Balachandran, K. and Kokila, J. (2012). On the controllability of fractional dynamical systems, International Journal of Applied Mathematics and Computer Science 22(3): 523–531, DOI: 10.2478/v10006-012-0039-0.

[4] Balachandran, K., Matar, M. and Trujillo, J.J. (2016). Note on controllability of linear fractional dynamical systems, Journal of Control and Decision 3(4): 267–279, DOI: 10.1080/23307706.2016.1217754.

[5] Balakrishnan, A.V. (1977). Boundary control of parabolic equations, Theory of Nonlinear Operators—International Summer School, Berlin, Germany, pp. 113–124.

[6] Barbu, V. (1980). Boundary control problems with convex cost criterion, SIAM Journal of Control and Optimization 18(1): 227–243. DOI: 10.1137/0318016.

[7] Bashirov, A.E. (2003). Partially Observable Linear Systems under Dependent Noises, Springer, Boston, MA.

[8] Curtain, R.F. and Zwart, H. (1995). An Introduction to Infinite Dimensional Systems Theory, Springer-Verlag, New York, NY.

[9] Fattorini, H.O. (1968). Boundary control systems, SIAM Journal of Control and Optimization 6(3): 349–385, DOI: 10.1137/0306025.

[10] Gal, C. and Warma, M. (2016). Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions, Evolution Equations and Control Theory 5(1): 61–103, DOI: 10.3934/eect.2016.5.61.

[11] Han, H.K. and Park, J.Y. (1999). Boundary controllability of differential equations with nonlocal condition, Journal of Mathematical Analysis and Application 230(1): 242–250, DOI: 10.1006/jmaa.1998.6199.

[12] Hansen, S.W. (1994). Boundary control of a one-dimensional linear thermoelastic rod, SIAM Journal of Control and Optimization 32(4): 1052–1074, DOI: 10.1137/S0363012991222607.

[13] Kilbas, A., Srivastava, H.M. and Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations, Elsevier, New York, NY.

[14] Klamka, J. (1997). Constrained approximate boundary controllability, IEEE Transactions on Automatic Control 42(2): 280–284, DOI: 10.1109/9.554411.

[15] Klamka, J. (2000). Constrained approximate controllability, IEEE Transactions on Automatic Control 45(9): 1745–1749. DOI: 10.1109/9.880640.

[16] Kreyszig, E. (1978). Introductory Functional Analysis with Applications, John Wiley and Sons, New York, NY.

[17] Lagnese, J. (1977). Boundary value control of a class of hyperbolic equations in a general region, SIAM Journal of Control and Optimization 15(6): 973–983, DOI: 10.1137/0315062.

[18] Lasiecka, I. and Triggiani, R. (1991). Exact controllability of semilinear abstract systems with application to waves and plates boundary control problems, Applied Mathematics and Optimization 23(1): 109–154, DOI: 10.1007/BF01442394.

[19] Li, Y. and Liu, B. (2008). Boundary controllability of non-linear stochastic differential inclusions, Applicable Analysis 87(6): 709–722, DOI: 10.1080/ 00036810802213231.

[20] Lions, J.L. and Magenes, E. (1972). Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, New York, NY.

[21] Mabel Lizzy, R., Balachandran, K. and Suvinthra, M. (2017). Controllability of nonlinear stochastic fractional systems with distributed delays in control, Journal of Control and Decision 4(3): 153–167, DOI: 10.1080/23307706.2017.1297690.

[22] Mahmudov, N.I. (2001). Controllability of linear stochastic systems in Hilbert spaces, Journal of Mathematical Analysis and Applications 259(5): 64–82, DOI: 10.1109/9.920790.

[23] Mahmudov, N.I. (2003). Controllability of semilinear stochastic systems in Hilbert spaces, Journal of Mathematical Analysis and Applications 288(1): 197–211.

[24] Mainardi, F., Mura, A. and Pagnini, G. (2010). The M-Wright function in time-fractional diffusion processes: A tutorial survey, International Journal of Differential Equations 2010(104505): 1–29.

[25] Oprzędkiewicz, K., Gawin, E. and Mitkowski, W. (2016). Modelling heat distribution with the use of a non-integer order, state space model, International Journal of Applied Mathematics and Computer Science 26(4): 749–756, DOI: 10.1515/amcs-2016-0052.

[26] Picard, R., Trostorff, S. and Waurick, M. (2012). On a class of boundary control problems, Operators and Matrices 1(1): 185–204, DOI: 10.7153/oam-08-10.

[27] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, New York, NY.

[28] Quinn, M.D. and Carmichael, N. (1985). An approach to nonlinear control problem using fixed point methods, degree theory, pseudo-inverse, Numerical Functional Analysis Optimization 7(2): 197–219, DOI: 10.1080/01630568508816189.

[29] Triggiani, R. (1975). Controllability and observability in Banach space with bounded operators, SIAM Journal of Control and Optimization 13(2): 462–491.

[30] Washburn, D. (1979). A bound on the boundary input map for parabolic equations with application to time optimal control, SIAM Journal of Control and Optimization 17(5): 652–671, DOI: 10.1137/0317046.