Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_1_a8, author = {Mabel Lizzy, R. and Balachandran, K.}, title = {Boundary controllability of nonlinear stochastic fractional systems in {Hilbert} spaces}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {123--133}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a8/} }
TY - JOUR AU - Mabel Lizzy, R. AU - Balachandran, K. TI - Boundary controllability of nonlinear stochastic fractional systems in Hilbert spaces JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 123 EP - 133 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a8/ LA - en ID - IJAMCS_2018_28_1_a8 ER -
%0 Journal Article %A Mabel Lizzy, R. %A Balachandran, K. %T Boundary controllability of nonlinear stochastic fractional systems in Hilbert spaces %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 123-133 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a8/ %G en %F IJAMCS_2018_28_1_a8
Mabel Lizzy, R.; Balachandran, K. Boundary controllability of nonlinear stochastic fractional systems in Hilbert spaces. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 1, pp. 123-133. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a8/
[1] Balachandran, K. and Anandhi, E.R. (2001). Boundary controllability of integrodifferential systems in Banach spaces, Proceedings of the Indian Academy of Sciences (Mathematical Sciences) 111(1): 127–135, DOI: 10.1007/BF02829544.
[2] Balachandran, K. and Divya, S. (2014). Controllability of nonlinear implicit fractional integrodifferential systems, International Journal of Applied Mathematics and Computer Science 24(4): 713–722, DOI: 10.2478/amcs-2014-0052.
[3] Balachandran, K. and Kokila, J. (2012). On the controllability of fractional dynamical systems, International Journal of Applied Mathematics and Computer Science 22(3): 523–531, DOI: 10.2478/v10006-012-0039-0.
[4] Balachandran, K., Matar, M. and Trujillo, J.J. (2016). Note on controllability of linear fractional dynamical systems, Journal of Control and Decision 3(4): 267–279, DOI: 10.1080/23307706.2016.1217754.
[5] Balakrishnan, A.V. (1977). Boundary control of parabolic equations, Theory of Nonlinear Operators—International Summer School, Berlin, Germany, pp. 113–124.
[6] Barbu, V. (1980). Boundary control problems with convex cost criterion, SIAM Journal of Control and Optimization 18(1): 227–243. DOI: 10.1137/0318016.
[7] Bashirov, A.E. (2003). Partially Observable Linear Systems under Dependent Noises, Springer, Boston, MA.
[8] Curtain, R.F. and Zwart, H. (1995). An Introduction to Infinite Dimensional Systems Theory, Springer-Verlag, New York, NY.
[9] Fattorini, H.O. (1968). Boundary control systems, SIAM Journal of Control and Optimization 6(3): 349–385, DOI: 10.1137/0306025.
[10] Gal, C. and Warma, M. (2016). Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions, Evolution Equations and Control Theory 5(1): 61–103, DOI: 10.3934/eect.2016.5.61.
[11] Han, H.K. and Park, J.Y. (1999). Boundary controllability of differential equations with nonlocal condition, Journal of Mathematical Analysis and Application 230(1): 242–250, DOI: 10.1006/jmaa.1998.6199.
[12] Hansen, S.W. (1994). Boundary control of a one-dimensional linear thermoelastic rod, SIAM Journal of Control and Optimization 32(4): 1052–1074, DOI: 10.1137/S0363012991222607.
[13] Kilbas, A., Srivastava, H.M. and Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations, Elsevier, New York, NY.
[14] Klamka, J. (1997). Constrained approximate boundary controllability, IEEE Transactions on Automatic Control 42(2): 280–284, DOI: 10.1109/9.554411.
[15] Klamka, J. (2000). Constrained approximate controllability, IEEE Transactions on Automatic Control 45(9): 1745–1749. DOI: 10.1109/9.880640.
[16] Kreyszig, E. (1978). Introductory Functional Analysis with Applications, John Wiley and Sons, New York, NY.
[17] Lagnese, J. (1977). Boundary value control of a class of hyperbolic equations in a general region, SIAM Journal of Control and Optimization 15(6): 973–983, DOI: 10.1137/0315062.
[18] Lasiecka, I. and Triggiani, R. (1991). Exact controllability of semilinear abstract systems with application to waves and plates boundary control problems, Applied Mathematics and Optimization 23(1): 109–154, DOI: 10.1007/BF01442394.
[19] Li, Y. and Liu, B. (2008). Boundary controllability of non-linear stochastic differential inclusions, Applicable Analysis 87(6): 709–722, DOI: 10.1080/ 00036810802213231.
[20] Lions, J.L. and Magenes, E. (1972). Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, New York, NY.
[21] Mabel Lizzy, R., Balachandran, K. and Suvinthra, M. (2017). Controllability of nonlinear stochastic fractional systems with distributed delays in control, Journal of Control and Decision 4(3): 153–167, DOI: 10.1080/23307706.2017.1297690.
[22] Mahmudov, N.I. (2001). Controllability of linear stochastic systems in Hilbert spaces, Journal of Mathematical Analysis and Applications 259(5): 64–82, DOI: 10.1109/9.920790.
[23] Mahmudov, N.I. (2003). Controllability of semilinear stochastic systems in Hilbert spaces, Journal of Mathematical Analysis and Applications 288(1): 197–211.
[24] Mainardi, F., Mura, A. and Pagnini, G. (2010). The M-Wright function in time-fractional diffusion processes: A tutorial survey, International Journal of Differential Equations 2010(104505): 1–29.
[25] Oprzędkiewicz, K., Gawin, E. and Mitkowski, W. (2016). Modelling heat distribution with the use of a non-integer order, state space model, International Journal of Applied Mathematics and Computer Science 26(4): 749–756, DOI: 10.1515/amcs-2016-0052.
[26] Picard, R., Trostorff, S. and Waurick, M. (2012). On a class of boundary control problems, Operators and Matrices 1(1): 185–204, DOI: 10.7153/oam-08-10.
[27] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, New York, NY.
[28] Quinn, M.D. and Carmichael, N. (1985). An approach to nonlinear control problem using fixed point methods, degree theory, pseudo-inverse, Numerical Functional Analysis Optimization 7(2): 197–219, DOI: 10.1080/01630568508816189.
[29] Triggiani, R. (1975). Controllability and observability in Banach space with bounded operators, SIAM Journal of Control and Optimization 13(2): 462–491.
[30] Washburn, D. (1979). A bound on the boundary input map for parabolic equations with application to time optimal control, SIAM Journal of Control and Optimization 17(5): 652–671, DOI: 10.1137/0317046.