An accurate fingerprint reference point determination method based on curvature estimation of separated ridges
International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 1, pp. 209-225.

Voir la notice de l'article provenant de la source Library of Science

This paper presents an effective method for the detection of a fingerprint’s reference point by analyzing fingerprint ridges’ curvatures. The proposed approach is a multi-stage system. The first step extracts the fingerprint ridges from an image and transforms them into chains of discrete points. In the second step, the obtained chains of points are processed by a dedicated algorithm to detect corners and other points of highest curvature on their planar surface. In a series of experiments we demonstrate that the proposed method based on this algorithm allows effective determination of fingerprint reference points. Furthermore, the proposed method is relatively simple and achieves better results when compared with the approaches known from the literature. The reference point detection experiments were conducted using publicly available fingerprint databases FVC2000, FVC2002, FVC2004 and NIST.
Keywords: biometrics, image processing, fingerprint recognition, Kolmogorov–Smirnov statistical test, reference point
Mots-clés : biometria, przetwarzanie obrazu, rozpoznawanie linii papilarnych, test statystyczny, punkt odniesienia
@article{IJAMCS_2018_28_1_a15,
     author = {Doroz, R. and Wrobel, K. and Porwik, P.},
     title = {An accurate fingerprint reference point determination method based on curvature estimation of separated ridges},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {209--225},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a15/}
}
TY  - JOUR
AU  - Doroz, R.
AU  - Wrobel, K.
AU  - Porwik, P.
TI  - An accurate fingerprint reference point determination method based on curvature estimation of separated ridges
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2018
SP  - 209
EP  - 225
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a15/
LA  - en
ID  - IJAMCS_2018_28_1_a15
ER  - 
%0 Journal Article
%A Doroz, R.
%A Wrobel, K.
%A Porwik, P.
%T An accurate fingerprint reference point determination method based on curvature estimation of separated ridges
%J International Journal of Applied Mathematics and Computer Science
%D 2018
%P 209-225
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a15/
%G en
%F IJAMCS_2018_28_1_a15
Doroz, R.; Wrobel, K.; Porwik, P. An accurate fingerprint reference point determination method based on curvature estimation of separated ridges. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 1, pp. 209-225. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a15/

[1] Arjona, R., Gersnoviez, A. and Baturone, I. (2011). Fuzzy models for fingerprint description, in A.M. Fanelli et al. (Eds.), Fuzzy Logic and Applications, WILF 2011, Lecture Notes in Computer Science, Vol. 6857, Springer, Berlin/Heidelberg, pp. 228–235.

[2] Bahgat, G., Khalil, A., Abdel Kader, N. and Mashali, S. (2013). Fast and accurate algorithm for core point detection in fingerprint images, Egyptian Informatics Journal 14(1): 15–25.

[3] Bazen, A.M. and Gerez, S.H. (2002). Systematic methods for the computation of the directional fields and singular points of fingerprints, IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7): 905–919.

[4] Bo, J., Ping, T.H. and Lan, X.M. (2008). Fingerprint singular point detection algorithm by Poincaré Index, WSEAS Transactions on Systems 7(12): 1453–1462.

[5] Chakravarti, I., Laha, R. and Roy, J. (1967). Handbook of Methods of Applied Statistics, Wiley, New York, NY.

[6] Galar, M., Derrac, J., Peralta, D., Triguero, I., Paternain, D., Lopez-Molina, C., García, S., Benítez, J.M., Pagola, M., Barrenechea, E., Bustince, H. and Herrera, F. (2015). A survey of fingerprint classification. Part I: Taxonomies on feature extraction methods and learning models, Knowledge-Based Systems 81: 76–97.

[7] Gavrilova, M.L. and Monwar, M. (2013). Multimodal Biometrics and Intelligent Image Processing for Security Systems, 1st Edn., IGI Global, Hershey, PA.

[8] Gupta, P. and Gupta, P. (2016). An accurate fingerprint orientation modeling algorithm, Applied Mathematical Modelling 40(15): 7182–7194.

[9] Jain, A.K., Chen, Y. and Demirkus, M. (2007). Pores and ridges: High-resolution fingerprint matching using level 3 features, IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1): 15–27.

[10] Jain, A.K., Prabhakar, S., Hong, L. and Pankanti, S. (2000). Filterbank-based fingerprint matching, IEEE Transactions on Image Processing 9(5): 846–859.

[11] Jin, C. and Kim, H. (2010). Pixel-level singular point detection from multi-scale Gaussian filtered orientation field, Pattern Recognition 43(11): 3879–3890.

[12] Jirachaweng, S., Hou, Z., Yau, W.-Y. and Areekul, V. (2011). Residual orientation modeling for fingerprint enhancement and singular point detection, Pattern Recognition 44(2): 431–442.

[13] Khalil, M.S. (2015). Reference point detection for camera-based fingerprint image based on wavelet transformation, BioMedical Engineering Online 14(1).

[14] Koprowski, R. (2016). Some selected quantitative methods of thermal image analysis in Matlab, Journal of Biophotonics 9(5): 510–520.

[15] Kowal, M. and Filipczuk, P. (2014). Nuclei segmentation for computer-aided diagnosis of breast cancer, International Journal of Applied Mathematics and Computer Science 24(1): 19–31, DOI: 10.2478/amcs-2014-0002.

[16] Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future directions, Progress in Artificial Intelligence 5(4): 221–232.

[17] Krawczyk, B. and Woźniak, M. (2016). Dynamic classifier selection for one-class classification, Knowledge-Based Systems 107(81): 43–53.

[18] Kundu, M.K. and Maiti, A.K. (2011). Accurate localizations of reference points in a fingerprint image, in S.O. Kuznetsov et al. (Eds.), Pattern Recognition and Machine Intelligence, PReMI 2011, Lecture Notes in Computer Science, Vol. 6744, Springer, Berlin/Heidelberg, pp. 293–298.

[19] Le, T.H. and Van, H.T. (2012). Fingerprint reference point detection for image retrieval based on symmetry and variation, Pattern Recognition 45(9): 3360–3372.

[20] Liu, M., Jiang, X. and Kot, A.C. (2005). Fingerprint reference-point detection, EURASIP Journal on Applied Signal Processing 2005(4): 498–509.

[21] Maltoni, D. (2009). Handbook of Fingerprint Recognition, 2nd. Edn., Springer, London.

[22] Mazurek, P. and Oszutowska-Mazurek, D. (2014). From the slit-island method to the ising model: Analysis of irregular grayscale objects, International Journal Applied Mathematics and Computer Science 24(1): 49–63, DOI: 10.2478/amcs-2014-0004.

[23] Nilsson, K. and Bigun, J. (2003). Localization of corresponding points in fingerprints by complex filtering, Pattern Recognition Letters 24(13): 2135–2144.

[24] Pavlidis, T. (1982). Algorithms for Graphics and Image Processing, Computer Science Press, Rockville, MD.

[25] Porwik, P. and Doroz, R. (2014). Self-adaptive biometric classifier working on the reduced dataset, in M. Polycarpou et al. (Eds.), Hybrid Artificial Intelligence Systems, HAIS 2014, Lecture Notes in Computer Science, Vol. 8480, Springer, Cham, pp. 377–388.

[26] Porwik, P., Doroz, R. and Orczyk, T. (2016). Signatures verification based on PNN classifier optimised by PSO algorithm, Pattern Recognition 60: 998–1014.

[27] Porwik, P., Doroz, R. and Wrobel, K. (2009). A new signature similarity measure, 2009 World Congress on Nature and Biologically Inspired Computing, NABIC 2009, Coimbatore, India, pp. 1022–1027.

[28] Porwik, P. and Wieclaw, L. (2004). A new approach to reference point location in fingerprint recognition, IEICE Electronics Express 1(18): 575–581.

[29] Porwik, P. and Wieclaw, L. (2008). A new efficient method of fingerprint image enhancement, International Journal of Biometrics 1(1): 36–46.

[30] Pujol, F.A., Mora, H. and Girona-Selva, J.A. (2016). A connectionist computational method for face recognition, International Journal of Applied Mathematics and Computer Science 26(2): 451–465, DOI: 10.1515/amcs-2016-0032.

[31] Putz-Leszczyńska, J. (2015). Signature verification: A comprehensive study of the hidden signature method, International Journal of Applied Mathematics and Computer Science 25(3): 659–674, DOI: 10.1515/amcs-2015-0048.

[32] Sharipov, O.S. (2011). Glivenko–Cantelli theorems, in M. Lovric (Ed.), International Encydopedia of Statistical Science, Springer, Berlin/Heidelberg, pp. 612–614.

[33] Srinivasan, V.S. and Murthy, N.N. (1992). Detection of singular points in fingerprint images, Pattern Recognition 25(2): 139–153.

[34] Stevenage, S.V. and Pitfield, C. (2016). Fact or friction: Examination of the transparency, reliability and sufficiency of the ACE-V method of fingerprint analysis, Forensic Science International 267: 145–156.

[35] Tabedzki, M., Saeed, K. and Szczepański, A. (2016). A modified K3M thinning algorithm, International Journal of Applied Mathematics and Computer Science 26(2): 439–450, DOI: 10.1515/amcs-2016-0031.

[36] Wang, Y., Hu, J. and Phillips, D. (2007). A fingerprint orientation model based on 2D Fourier expansion (FOMFE) and its application to singular-point detection and fingerprint indexing, IEEE Transactions on Pattern Analysis and Machine Intelligence 29(4): 573–585.

[37] Weng, D., Yin, Y. and Yang, D. (2011). Singular points detection based on multi-resolution in fingerprint images, Neurocomputing 74(17): 3376–3388.

[38] Xie, S.J. and Zhang, Y. (2016). Beam search algorithm for fingerprint reference point determination based on joint orientation features, International Journal of Science and Research 5(5): 2493–2500.

[39] Zacharias, G.C., Nair, M.S. and Lal, P.S. (2017). Fingerprint reference point identification based on chain encoded discrete curvature and bending energy, Pattern Analysis and Applications 20(1): 253–267.