Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_1_a14, author = {\"Ulk\"u, \.I. and Kizgut, E.}, title = {Large-scale hyperspectral image compression via sparse representations based on online learning}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {197--207}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a14/} }
TY - JOUR AU - Ülkü, İ. AU - Kizgut, E. TI - Large-scale hyperspectral image compression via sparse representations based on online learning JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 197 EP - 207 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a14/ LA - en ID - IJAMCS_2018_28_1_a14 ER -
%0 Journal Article %A Ülkü, İ. %A Kizgut, E. %T Large-scale hyperspectral image compression via sparse representations based on online learning %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 197-207 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a14/ %G en %F IJAMCS_2018_28_1_a14
Ülkü, İ.; Kizgut, E. Large-scale hyperspectral image compression via sparse representations based on online learning. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 1, pp. 197-207. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a14/
[1] Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences 2(1): 183–202.
[2] Bioucas-Dias, J.M. and Figueiredo, M.A. (2007). A new twist: Two-step iterative shrinkage/thresholding algorithms for image restoration, IEEE Transactions on Image Processing 16(12): 2992–3004.
[3] Boyd, S., Parikh, N., Chu, E., Peleato, B. and Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning 3(1): 1–122.
[4] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization, Cambridge University Press, Cambridge.
[5] Charles, A.S., Olshausen, B.A. and Rozell, C.J. (2011). Learning sparse codes for hyperspectral imagery, IEEE Journal of Selected Topics in Signal Processing 5(5): 963–978.
[6] Chen, S.S., Donoho, D.L. and Saunders, M.A. (2001). Atomic decomposition by basis pursuit, SIAM Review 43(1): 129–159.
[7] Donoho, D.L., Tsaig, Y., Drori, I. and Starck, J.L. (2012). Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit, IEEE Transactions on Information Theory 58(2): 1094–1121.
[8] Du, Q. and Fowler, J.E. (2007). Hyperspectral image compression using JPEG2000 and principal component analysis, IEEE Geoscience and Remote Sensing Letters 4(2): 201–205.
[9] Fowler, J.E. (2009). Compressive-projection principal component analysis, IEEE Transactions on Image Processing 18(10): 2230–2242.
[10] Friedlander, M. and Saunders, M. (2012). A dual active-set quadratic programming method for finding sparse least-squares solutions, Online, University of British Columbia, Vancouver, BC, http://web.stanford.edu/group/SOL/software/asp/bpdual.pdf.
[11] Gong, P., Zhang, C., Lu, Z., Huang, J. and Ye, J. (2013). A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems, 30th International Conference on Machine Learning (ICML), Atlanta, GA, USA, pp. 37–45.
[12] Hou, Y. and Zhang, Y. (2014). Effective hyperspectral image block compressed sensing using three-dimensional wavelet transform, IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, pp. 2973–2976.
[13] Ji, S., Xue, Y. and Carin, L. (2008). Bayesian compressive sensing, IEEE Transactions on Signal Processing 56(6): 2346–2356.
[14] Kim, S.J., Koh, K., Lustig, M., Boyd, S. and Gorinevsky, D. (2007). An interior-point method for large-scale-regularized least squares, IEEE Journal of Selected Topics in Signal Processing 1(4): 606–617.
[15] Mairal, J., Bach, F., Ponce, J. and Sapiro, G. (2010). Online learning for matrix factorization and sparse coding, Journal of Machine Learning Research 11: 19–60.
[16] Mallat, S.G. and Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing 41(12): 3397–3415.
[17] Needell, D. and Vershynin, R. (2009). Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit, Foundations of Computational Mathematics 9(3): 317–334.
[18] Nowak, R.D. and Wright, S.J. (2007). Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems, IEEE Journal of Selected Topics in Signal Processing 1(4): 586–597.
[19] Nowicki, A., Grochowski, M. and Duzinkiewicz, K. (2012). Data-driven models for fault detection using kernel PCA: A water distribution system case study, International Journal of Applied Mathematics and Computer Science 22(4): 939–949, DOI: 10.2478/v10006-012-0070-1.
[20] Olshausen, B.A. and Field, D.J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by v1?, Vision Research 37(23): 3311–3325.
[21] Panek, D., Skalski, A., Gajda, J. and Tadeusiewicz, R. (2015). Acoustic analysis assessment in speech pathology detection, International Journal of Applied Mathematics and Computer Science 25(3): 631–643, DOI: 10.1515/amcs-2015-0046.
[22] Parikh, N. and Boyd, S.P. (2014). Proximal algorithms, Foundations and Trends in Optimization 1(3): 127–139.
[23] Penna, B., Tillo, T. and Olmo, G. (2007). Transform coding techniques for lossy hyperspectral data compression, IEEE Transactions on Geoscience and Remote Sensing 45(5): 1408–1421.
[24] Reed, S.I. and Yu, X. (1990). Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution, IEEE Transactions on Acoustics, Speech, and Signal Processing 38(10): 1760–1770.
[25] Tropp, J.A. and Gilbert, A.C. (2007). Signal recovery from random measurements via orthogonal matching pursuit, IEEE Transactions on Information Theory 53(12): 4655–4666.
[26] Ülkü, İ. and Töreyin, B.U. (2015a). Sparse coding of hyperspectral imagery using online learning, Signal, Video and Image Processing 9(4): 959–966.
[27] Ülkü, İ. and Töreyin, B.U. (2015b). Sparse representations for online-learning-based hyperspectral image compression, Applied Optics 54(29): 8625–8631.
[28] Wang, J., Kwon, S. and Shim, B. (2012). Generalized orthogonal matching pursuit, IEEE Transactions on Signal Processing 60(12): 6202–6216.
[29] Wang, Z., Nasrabadi, N.M. and Huang, T.S. (2014). Spatial-spectral classification of hyperspectral images using discriminative dictionary designed by learning vector quantization, IEEE Transactions on Geoscience and Remote Sensing 52(8): 4808–4822.
[30] Wright, J., Yang, A.Y., Ganesh, A. and Sastry, S.S. (2009). Robust face recognition via sparse representation, IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2): 210–227.
[31] Yang, A.Y., Zhou, Z., Balasubramanian, A.G., Sastry, S.S. and Ma, Y. (2013). Fast-minimization algorithms for robust face recognition, IEEE Transactions on Image Processing 22(8): 3234–3246.
[32] Yang, J., Peng, Y., Xu, W. and Dai, Q. (2009). Ways to sparse representation: An overview, Science in China F: Information Sciences 52(4): 675–703.
[33] Zhang, Z., Xu, Y., Yang, J., Li, X. and Zhang, D. (2015). A survey of sparse representation: Algorithms and applications, IEEE Access 3: 490–530.
[34] Zuo, W., Meng, D., Zhang, L., X.F. and Zhang, D. (2013). A generalized iterated shrinkage algorithm for non-convex sparse coding, Proceedings of the IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, pp. 217–224.