Large-scale hyperspectral image compression via sparse representations based on online learning
International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 1, pp. 197-207.

Voir la notice de l'article provenant de la source Library of Science

In this study, proximity based optimization algorithms are used for lossy compression of hyperspectral images that are inherently large scale. This is the first time that such proximity based optimization algorithms are implemented with an online dictionary learning method. Compression performances are compared with the one obtained by various sparse representation algorithms. As a result, proximity based optimization algorithms are listed among the three best ones in terms of compression performance values for all hyperspectral images. Additionally, the applicability of anomaly detection is tested on the reconstructed images.
Keywords: hyperspectral imaging, compression algorithm, dictionary learning, sparse coding
Mots-clés : obrazowanie wielospektralne, algorytm kompresji, nauczanie online, kodowanie rzadkie
@article{IJAMCS_2018_28_1_a14,
     author = {\"Ulk\"u, \.I. and Kizgut, E.},
     title = {Large-scale hyperspectral image compression via sparse representations based on online learning},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {197--207},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a14/}
}
TY  - JOUR
AU  - Ülkü, İ.
AU  - Kizgut, E.
TI  - Large-scale hyperspectral image compression via sparse representations based on online learning
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2018
SP  - 197
EP  - 207
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a14/
LA  - en
ID  - IJAMCS_2018_28_1_a14
ER  - 
%0 Journal Article
%A Ülkü, İ.
%A Kizgut, E.
%T Large-scale hyperspectral image compression via sparse representations based on online learning
%J International Journal of Applied Mathematics and Computer Science
%D 2018
%P 197-207
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a14/
%G en
%F IJAMCS_2018_28_1_a14
Ülkü, İ.; Kizgut, E. Large-scale hyperspectral image compression via sparse representations based on online learning. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 1, pp. 197-207. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a14/

[1] Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences 2(1): 183–202.

[2] Bioucas-Dias, J.M. and Figueiredo, M.A. (2007). A new twist: Two-step iterative shrinkage/thresholding algorithms for image restoration, IEEE Transactions on Image Processing 16(12): 2992–3004.

[3] Boyd, S., Parikh, N., Chu, E., Peleato, B. and Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning 3(1): 1–122.

[4] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization, Cambridge University Press, Cambridge.

[5] Charles, A.S., Olshausen, B.A. and Rozell, C.J. (2011). Learning sparse codes for hyperspectral imagery, IEEE Journal of Selected Topics in Signal Processing 5(5): 963–978.

[6] Chen, S.S., Donoho, D.L. and Saunders, M.A. (2001). Atomic decomposition by basis pursuit, SIAM Review 43(1): 129–159.

[7] Donoho, D.L., Tsaig, Y., Drori, I. and Starck, J.L. (2012). Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit, IEEE Transactions on Information Theory 58(2): 1094–1121.

[8] Du, Q. and Fowler, J.E. (2007). Hyperspectral image compression using JPEG2000 and principal component analysis, IEEE Geoscience and Remote Sensing Letters 4(2): 201–205.

[9] Fowler, J.E. (2009). Compressive-projection principal component analysis, IEEE Transactions on Image Processing 18(10): 2230–2242.

[10] Friedlander, M. and Saunders, M. (2012). A dual active-set quadratic programming method for finding sparse least-squares solutions, Online, University of British Columbia, Vancouver, BC, http://web.stanford.edu/group/SOL/software/asp/bpdual.pdf.

[11] Gong, P., Zhang, C., Lu, Z., Huang, J. and Ye, J. (2013). A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems, 30th International Conference on Machine Learning (ICML), Atlanta, GA, USA, pp. 37–45.

[12] Hou, Y. and Zhang, Y. (2014). Effective hyperspectral image block compressed sensing using three-dimensional wavelet transform, IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, pp. 2973–2976.

[13] Ji, S., Xue, Y. and Carin, L. (2008). Bayesian compressive sensing, IEEE Transactions on Signal Processing 56(6): 2346–2356.

[14] Kim, S.J., Koh, K., Lustig, M., Boyd, S. and Gorinevsky, D. (2007). An interior-point method for large-scale-regularized least squares, IEEE Journal of Selected Topics in Signal Processing 1(4): 606–617.

[15] Mairal, J., Bach, F., Ponce, J. and Sapiro, G. (2010). Online learning for matrix factorization and sparse coding, Journal of Machine Learning Research 11: 19–60.

[16] Mallat, S.G. and Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing 41(12): 3397–3415.

[17] Needell, D. and Vershynin, R. (2009). Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit, Foundations of Computational Mathematics 9(3): 317–334.

[18] Nowak, R.D. and Wright, S.J. (2007). Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems, IEEE Journal of Selected Topics in Signal Processing 1(4): 586–597.

[19] Nowicki, A., Grochowski, M. and Duzinkiewicz, K. (2012). Data-driven models for fault detection using kernel PCA: A water distribution system case study, International Journal of Applied Mathematics and Computer Science 22(4): 939–949, DOI: 10.2478/v10006-012-0070-1.

[20] Olshausen, B.A. and Field, D.J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by v1?, Vision Research 37(23): 3311–3325.

[21] Panek, D., Skalski, A., Gajda, J. and Tadeusiewicz, R. (2015). Acoustic analysis assessment in speech pathology detection, International Journal of Applied Mathematics and Computer Science 25(3): 631–643, DOI: 10.1515/amcs-2015-0046.

[22] Parikh, N. and Boyd, S.P. (2014). Proximal algorithms, Foundations and Trends in Optimization 1(3): 127–139.

[23] Penna, B., Tillo, T. and Olmo, G. (2007). Transform coding techniques for lossy hyperspectral data compression, IEEE Transactions on Geoscience and Remote Sensing 45(5): 1408–1421.

[24] Reed, S.I. and Yu, X. (1990). Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution, IEEE Transactions on Acoustics, Speech, and Signal Processing 38(10): 1760–1770.

[25] Tropp, J.A. and Gilbert, A.C. (2007). Signal recovery from random measurements via orthogonal matching pursuit, IEEE Transactions on Information Theory 53(12): 4655–4666.

[26] Ülkü, İ. and Töreyin, B.U. (2015a). Sparse coding of hyperspectral imagery using online learning, Signal, Video and Image Processing 9(4): 959–966.

[27] Ülkü, İ. and Töreyin, B.U. (2015b). Sparse representations for online-learning-based hyperspectral image compression, Applied Optics 54(29): 8625–8631.

[28] Wang, J., Kwon, S. and Shim, B. (2012). Generalized orthogonal matching pursuit, IEEE Transactions on Signal Processing 60(12): 6202–6216.

[29] Wang, Z., Nasrabadi, N.M. and Huang, T.S. (2014). Spatial-spectral classification of hyperspectral images using discriminative dictionary designed by learning vector quantization, IEEE Transactions on Geoscience and Remote Sensing 52(8): 4808–4822.

[30] Wright, J., Yang, A.Y., Ganesh, A. and Sastry, S.S. (2009). Robust face recognition via sparse representation, IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2): 210–227.

[31] Yang, A.Y., Zhou, Z., Balasubramanian, A.G., Sastry, S.S. and Ma, Y. (2013). Fast-minimization algorithms for robust face recognition, IEEE Transactions on Image Processing 22(8): 3234–3246.

[32] Yang, J., Peng, Y., Xu, W. and Dai, Q. (2009). Ways to sparse representation: An overview, Science in China F: Information Sciences 52(4): 675–703.

[33] Zhang, Z., Xu, Y., Yang, J., Li, X. and Zhang, D. (2015). A survey of sparse representation: Algorithms and applications, IEEE Access 3: 490–530.

[34] Zuo, W., Meng, D., Zhang, L., X.F. and Zhang, D. (2013). A generalized iterated shrinkage algorithm for non-convex sparse coding, Proceedings of the IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, pp. 217–224.