Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_1_a12, author = {Aldila, D. and Padma, H. and Khotimah, K. and Desjwiandra, B. and Tasman, H.}, title = {Analyzing the {MERS} disease control strategy through an optimal control problem}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {169--184}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a12/} }
TY - JOUR AU - Aldila, D. AU - Padma, H. AU - Khotimah, K. AU - Desjwiandra, B. AU - Tasman, H. TI - Analyzing the MERS disease control strategy through an optimal control problem JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 169 EP - 184 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a12/ LA - en ID - IJAMCS_2018_28_1_a12 ER -
%0 Journal Article %A Aldila, D. %A Padma, H. %A Khotimah, K. %A Desjwiandra, B. %A Tasman, H. %T Analyzing the MERS disease control strategy through an optimal control problem %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 169-184 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a12/ %G en %F IJAMCS_2018_28_1_a12
Aldila, D.; Padma, H.; Khotimah, K.; Desjwiandra, B.; Tasman, H. Analyzing the MERS disease control strategy through an optimal control problem. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 1, pp. 169-184. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a12/
[1] Abboubakar, M., Kamgang, J. and Tieudjo, D. (2015). Backward bifurcation and control in transmission dynamics of arboviral diseases, Mathematical Biosciences 278(1): 100–129.
[2] Al-Tawfiq, J., Smallwood, C., Arbuthnott, K., Malik, M.S., Barbeschi, M. and Memish, Z. (2012). Emerging respiratory and novel coronavirus 2012 infections and mass gatherings, East Mediterr Health Journal 19(1): 48–54.
[3] Aldila, D., Nuraini, N. and Soewono, E. (2014). Optimal control problem of preventing of swine flu disease transmission, Applied Mathematical Science 8(71): 3501–3512.
[4] Aldila, D., Soewono, E. and Nuraini, N. (2012). On the analysis of effectiveness in mass application of mosquito repellent for dengue disease prevention, AIP Conference Proceedings 1450(1): 103–109.
[5] Assiri, A., McGeer, A., Perl, T., Price, C., Al Rabeaah, A. and Cummings, D. (2013). Hospital outbreak of Middle East respiratory syndrome coronavirus, The New England Journal of Medicine 369(5): 407–416.
[6] Cauchemez, S., Fraser, C., Van Kerkhove, M., Donnelly, C., Riley, S. and Rambaut, A. (2014). Middle East respiratory syndrome coronavirus: Quantification of the extent of the epidemic, surveillance biases, and transmissibility, Lancet Infectious Diseases 14(1): 5056.
[7] Chowell, G., Blumberg, S., Simonsen, L., Miller, M. and Viboud, C. (2014). Synthesizing data and models for the spread of MERS-CoV, 2013: Key role of index cases and hospital transmission, Epidemics 9(1): 40–51.
[8] Diekmann, O. and Heesterbeek, J. (2000). Mathematical Epidemiology of Infectious Diseases, Model Building, Analysis and Interpretation, John Wiley Son, Chichester.
[9] Diekmann, O., Heesterbeek, J. and Metz, J. (1990). On the definition and the computation of the basic reproduction ratio of R0 in models of infectious disease in heterogeneous populations, Journal of Mathematical Biology 28(4): 365–382.
[10] Diekmann, O., Heesterbeek, J. and Roberts, M. (2010). The construction of next-generation matrices for compartmental epidemic models, Journal of The Royal Society Interface 7(47): 873–885.
[11] Ejima, K., Aihara, K. and Nishiura, H. (2014). Probabilistic differential diagnosis of Middle East respiratory syndrome (MERS) using the time from immigration to illness onset among imported cases, Journal of Theoretical Biology 346(1).
[12] Gautret, P. (2013). Middle East respiratory syndrome (MERS) coronavirus: What travel health advice should be given to Hajj pilgrims?, Travel Medicine and Infectious Disease 11(5): 263–265.
[13] Gerberry, D. (2016). Practical aspects of backward bifurcation in a mathematical model for tuberculosis, Journal of Theoretical Biology 388(1): 15–36.
[14] Haagmans, B., Al Dhahiry, S., Reusken, C., Raj, V. and Galiano, M. (2014). Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation, Lancet Infectious Diseases 14(2): 140–145.
[15] Malik, T.M., Alsaleh, A.A., Gumel, A.B. and Safi, M.A. (2015). Optimal strategies for controlling the MERS coronavirus during a mass gathering, Global Journal of Pure and Applied Mathematics 11(6): 4831–4865.
[16] Muller, M., Meyer, B., Corman, V., Al-Masri,M., Turkestani, A. and Ritz, D. (2015). Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study, Lancet Infectious Diseases 15(5): 559–564.
[17] Novkaniza, F., Ivana and Aldila, D. (2016). Controlling influenza disease: Comparison between discrete time Markov chain and deterministic model, AIP Conference Proceedings 1723(1): 030015–10, DOI: 10.1063/1.4945073.
[18] Obaid, H.A., Ouifki, R. and Patidar, K.C. (2013). An unconditionally stable nonstandard finite difference method applied to a mathematical model of HIV infection, International Journal of Applied Mathematics and Computer Science 23(2): 357–372, DOI: 10.2478/amcs-2013-0027.
[19] Okuonghae, D. (2013). A mathematical model of tuberculosis transmission with heterogeneity in disease susceptibility and progression under a treatment regime for infectious cases, Applied Mathematical Modelling 37(10–11): 6786–6808.
[20] Omrani, A., Abdul-Mutin, M., Haddad, Q., Al-Nakhli, D., Memish, Z. and Albarrak, A. (2013). A family cluster of Middle East respiratory syndrome coronavirus infectious related to a likely unrecognized asymptomatic or mild case, International Journal of Infectious Disease 17(9): 668–672.
[21] Paez Chavez, J., Gotz, T., Siegmund, S. and Wijaya, K. (2017). An SIR-Dengue transmission model with seasonal effects and impulsive control, Mathematical Biosciences 289(2): 29–39.
[22] Pattnaik, S., Bakwad, K., Sohi, B., Ratho, R. and Devi, S. (2013). Swine influenza models based optimization (SIMBO), Applied Soft Computing 13(1): 628–653.
[23] Poletto, C., Pelat, C., Levy-Bruhl, D., Yazdanpanah, Y., Boelle, P.-Y. and Colizza, V. (2014). Assessment of the Middle East respiratory syndrome coronavirus (MERS-COV) epidemic in the Middle East and risk of international spread using a novel maximum likelihood analysis approach, Eurosurveillance 19(23): 20824.
[24] Reusken, C.B.E.M., Haagmans, B.L., Muller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B.,Muth, D., Raj, V.S., Smits-De Vries, L., Corman, V.M., Drexler, J.-F., Smits, S.L., El Tahir, Y.E., De Sousa, R., van Beek, J., Nowotny, N., van Maanen, K., Hidalgo-Hermoso, E., Bosch, B.J., Rottier, P., Osterhaus, A., Gortazar-Schmidt, C., Drosten, C. and Koopmans, M.P.G. (2013). Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study, Lancet Infectious Diseases 13(10): 859–866.
[25] Saha, S. and Roy, P.K. (2017). A comparative study between two systems with and without awareness in controlling HIV/AIDS, International Journal of Applied Mathematics and Computer Science 27(2): 337–350, DOI: 10.1515/amcs-2017-0024.
[26] WHO (2013). Revised interim case definition for reporting to WHO—Middle East respiratory syndrome coronavirus (MERS-CoV), www.who.int/csr/disease/coronavirus_infections/case_definition_03_07_2014/en/.
[27] WHO (2016). Middle East respiratory syndrome coronavirus (MERS-CoV), www.who.int/mediacentre/factsheets/mers-cov/en.
[28] Xia, Z.-Q., Zhang, J., Xue, Y.-K., Sun, G.-Q. and Jin, Z. (2015). Modeling the transmission of Middle East respirator syndrome corona virus in the Republic of Korea, PLoS ONE 10(12): e0144778.
[29] Xu, Z. and Ai, C. (2016). Traveling waves in a diffusive influenza epidemic model with vaccination, Applied Mathematical Modelling 40(15–16): 7265–7280.
[30] Zaki, A., van Boheemen, S., Bestebroer, T., Osterhaus, A. and Fouchier, R. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia, The New England Journal of Medicine 367(19): 1814–1820.