Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_1_a11, author = {Ha, J. S. and Choi, H. L. and Jeon, J. H.}, title = {Iterative methods for efficient sampling-based optimal motion planning of nonlinear systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {155--168}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a11/} }
TY - JOUR AU - Ha, J. S. AU - Choi, H. L. AU - Jeon, J. H. TI - Iterative methods for efficient sampling-based optimal motion planning of nonlinear systems JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 155 EP - 168 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a11/ LA - en ID - IJAMCS_2018_28_1_a11 ER -
%0 Journal Article %A Ha, J. S. %A Choi, H. L. %A Jeon, J. H. %T Iterative methods for efficient sampling-based optimal motion planning of nonlinear systems %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 155-168 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a11/ %G en %F IJAMCS_2018_28_1_a11
Ha, J. S.; Choi, H. L.; Jeon, J. H. Iterative methods for efficient sampling-based optimal motion planning of nonlinear systems. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 1, pp. 155-168. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a11/
[1] Arslan, O. and Tsiotras, P. (2013). Use of relaxation methods in sampling-based algorithms for optimal motion planning, IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, pp. 2421–2428.
[2] García-Rodríguez, R., Segovia-Palacios, V., Parra-Vega, V. and Villalva-Lucio, M. (2016). Dynamic optimal grasping of a circular object with gravity using robotic soft-fingertips, International Journal of Applied Mathematics and Computer Science 26(2): 309–323, DOI: 10.1515/amcs-2016-0022.
[3] Glassman, E. and Tedrake, R. (2010). A quadratic regulator-based heuristic for rapidly exploring state space, IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, pp. 5021–5028.
[4] Goretkin, G., Perez, A., Platt, R. and Konidaris, G. (2013). Optimal sampling-based planning for linear-quadratic kinodynamic systems, IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, pp. 2429–2436.
[5] Ha, J.-S., Lee, J.-J. and Choi, H.-L. (2013). A successive approximation-based approach for optimal kinodynamic motion planning with nonlinear differential constraints, IEEE Conference on Decision and Control, Florence, Italy, pp. 3623–3628.
[6] Huynh, V.A., Karaman, S. and Frazzoli, E. (2012). An incremental sampling-based algorithm for stochastic optimal control, IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, pp. 2865–2872.
[7] Huynh, V.A., Kogan, L. and Frazzoli, E. (2014). A Martingale approach and time-consistent sampling-based algorithms for risk management in stochastic optimal control, IEEE Conference on Decision and Control, Los Angeles, CA, USA, pp. 1858–1865.
[8] Janson, L., Schmerling, E., Clark, A. and Pavone, M. (2015). Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions, The International Journal of Robotics Research 34(7): 883–921.
[9] Jeon, J., Karaman, S. and Frazzoli, E. (2011). Anytime computation of time-optimal off-road vehicle maneuvers using the RRT*, IEEE Conference on Decision and Control, Orlando, FL, USA, pp. 3276–3282.
[10] Jeon, J., Karaman, S. and Frazzoli, E. (2015). Optimal sampling-based feedback motion trees among obstacles for controllable linear systems with linear constraints, IEEE International Conference on Robotics and Automation, Seattle, WA, USA, pp. 4195–4201.
[11] Karaman, S. and Frazzoli, E. (2010). Optimal kinodynamic motion planning using incremental sampling-based methods, IEEE Conference on Decision and Control, Atlanta, GA, USA, pp. 7681–7687.
[12] Karaman, S. and Frazzoli, E. (2011a). Incremental sampling-based algorithms for a class of pursuit-evasion games, in D. Hsu et al. (Eds.), Algorithmic Foundations of Robotics IX, Springer, Berlin/Heidelberg, pp. 71–87.
[13] Karaman, S. and Frazzoli, E. (2011b). Sampling-based algorithms for optimal motion planning, International Journal of Robotics Research 30(7): 846–894.
[14] Karaman, S. and Frazzoli, E. (2013). Sampling-based optimal motion planning for non-holonomic dynamical systems, IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, pp. 5041–5047.
[15] Karaman, S., Walter, M.R., Perez, A., Frazzoli, E. and Teller, S. (2011). Anytime motion planning using the RRT*, IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 1478–1483.
[16] Kirk, D.E. (2012). Optimal Control Theory: An Introduction, Courier Corporation, Dover Publications, Inc. Mineola, NY.
[17] Klaučo, M., Blažek, S. and Kvasnica, M. (2016). An optimal path planning problem for heterogeneous multi-vehicle systems, International Journal of Applied Mathematics and Computer Science 26(2): 297–308, DOI: 10.1515/amcs-2016-0021.
[18] LaValle, S.M. (1998). Rapidly-exploring random trees: A new tool for path planning, Technical Report 98-11, Iowa State University, Ames, IO.
[19] LaValle, S.M. (2011). Motion planning, IEEE Robotics Automation Magazine 18(1): 79–89.
[20] Lewis, F.L., Vrabie, D. and Syrmos, V.L. (1995). Optimal Control, John Wiley Sons, New York, NY.
[21] Pepy, R., Kieffer, M. and Walter, E. (2009). Reliable robust path planning with application to mobile robots, International Journal of Applied Mathematics and Computer Science 19(3): 413–424, DOI: 10.2478/v10006-009-0034-2.
[22] Perez, A., Platt, R., Konidaris, G., Kaelbling, L. and Lozano-Perez, T. (2012). LQR-RRT*: Optimal sampling-based motion planning with automatically derived extension heuristics, IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, pp. 2537–2542.
[23] Rodríguez-Liñán, M.C., Mendoza, M., Bonilla, I. and Chávez-Olivares, C.A. (2017). Saturating stiffness control of robot manipulators with bounded inputs, International Journal of Applied Mathematics and Computer Science 27(1): 79–90, DOI: 10.1515/amcs-2017-0006.
[24] Szynkiewicz, W. and Błaszczyk, J. (2011). Optimization-based approach to path planning for closed chain robot systems, International Journal of Applied Mathematics and Computer Science 21(4): 659–670, DOI: 10.2478/v10006-011-0052-8.
[25] Tang, G. (2005). Suboptimal control for nonlinear systems: A successive approximation approach, Systems Control Letters 54(5): 429–434.
[26] Tedrake, R. (2009). Underactuated robotics: Learning, planning, and control for efficient and agile machines, Course Notes for MIT 6.832, MIT, Cambridge, MA, http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-832-underactuated-robotics-spring-2009/.
[27] Webb, D.J. and van den Berg, J. (2013). Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics, 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, pp. 5054–5061.