Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2018_28_1_a1, author = {Zattoni, E.}, title = {A geometric approach to structural model matching by output feedback in linear impulsive systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {25--38}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a1/} }
TY - JOUR AU - Zattoni, E. TI - A geometric approach to structural model matching by output feedback in linear impulsive systems JO - International Journal of Applied Mathematics and Computer Science PY - 2018 SP - 25 EP - 38 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a1/ LA - en ID - IJAMCS_2018_28_1_a1 ER -
%0 Journal Article %A Zattoni, E. %T A geometric approach to structural model matching by output feedback in linear impulsive systems %J International Journal of Applied Mathematics and Computer Science %D 2018 %P 25-38 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a1/ %G en %F IJAMCS_2018_28_1_a1
Zattoni, E. A geometric approach to structural model matching by output feedback in linear impulsive systems. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 1, pp. 25-38. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a1/
[1] Basile, G. and Marro, G. (1992). Controlled and Conditioned Invariants in Linear System Theory, Prentice Hall, Englewood Cliffs, NJ.
[2] Carnevale, D., Galeani, S., Menini, L. and Sassano, M. (2016). Hybrid output regulation for linear systems with periodic jumps: Solvability conditions, structural implications and semi-classical solutions, IEEE Transactions on Automatic Control 61(9): 2416–2431.
[3] Carnevale, D., Galeani, S. and Sassano, M. (2014a). Francis equations vs invariant subspace algorithm for hybrid output regulation, 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, pp. 4697–4702.
[4] Carnevale, D., Galeani, S. and Sassano, M. (2014b). A linear quadratic approach to linear time invariant stabilization for a class of hybrid systems, 22nd Mediterranean Conference on Control and Automation, Palermo, Italy, pp. 545–550.
[5] Choe, D.-G. and Kim, J.-H. (2002). Pitch autopilot design using model-following adaptive sliding mode control, Journal of Guidance, Control, and Dynamics 25(4): 826–829.
[6] Colaneri, P. and Kučera, V. (1997). The model matching problem for periodic discrete-time systems, IEEE Transactions on Automatic Control 42(10): 1472–1476.
[7] Conte, G. and Perdon, A.M. (1995). The disturbance decoupling problem for systems over a ring, SIAM Journal on Control and Optimization 33(3): 750–764.
[8] Conte, G., Perdon, A.M. and Zattoni, E. (2013). A geometric approach to output regulation for discrete-time switched linear systems, 21st Mediterranean Conference on Control and Automation, Platanias-Chania, Crete, Greece, pp. 852–857.
[9] Conte, G., Perdon, A.M. and Zattoni, E. (2014). Model matching problems for switching linear systems, IFAC Proceedings Volumes 47(3): 1501–1506.
[10] Conte, G., Perdon, A.M. and Zattoni, E. (2015a). The disturbance decoupling problem for jumping hybrid systems, 54th IEEE Conference on Decision and Control, Osaka, Japan, pp. 1589–1594.
[11] Conte, G., Perdon, A.M. and Zattoni, E. (2015b). The disturbance decoupling problem with quadratic stability for LPV systems, IFAC-PapersOnLine 48(26): 1–6.
[12] Conte, G., Perdon, A.M. and Zattoni, E. (2017). Unknown input observers for hybrid linear systems with state jumps, IFACPapersOnLine 50(1): 6458–6464.
[13] Djemai, M. and Deefort, M. (2015). Hybrid Dynamical Systems, Lecture Notes in Control and Information Sciences, Vol. 457, Springer, Berlin/Heidelberg.
[14] Engell, S., Frehse, G. and Schnieder, E. (2002). Modeling, Analysis and Design of Hybrid Systems, Lecture Notes in Control and Information Sciences, Vol. 279, Springer, Berlin/Heidelberg.
[15] Goebel, R., Sanfelice, R.G. and Teel, A.R. (2012). Hybrid Dynamical Systems: Modeling, Stability, and Robustness, Princeton University Press, Princeton, NJ.
[16] Haddad, W.M., Chellaboina, V.S. and Nersesov, S.G. (2006). Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control, Princeton Series in Applied Mathematics, Vol. 6, Princeton University Press, Princeton, NJ.
[17] Hua, C.-C. and Ding, S. (2011). Model following controller design for large-scale systems with time-delay interconnections and multiple dead-zone inputs, IEEE Transactions on Automatic Control 56(4): 962–968.
[18] Kaczorek, T. (1982). Polynomial equation approach to exact model matching problem in multivariable linear systems, International Journal of Control 36(3): 531–539.
[19] Kouhi, Y., Bajcinca, N. and Sanfelice, R.G. (2013). Suboptimality bounds for linear quadratic problems in hybrid linear systems, 2013 European Control Conference, Zürich, Switzerland, pp. 2663–2668.
[20] Kučera, V. (1992). Model matching of descriptor systems by proportional state feedback, Automatica 28(2): 423–425.
[21] Lawrence, D.A. (2014). Controlled invariant subspaces for linear impulsive systems, 2014 American Control Conference, Portland, OR, USA, pp. 2336–2341.
[22] Lawrence, D.A. (2015). Conditioned invariant subspaces for linear impulsive systems, 2015 American Control Conference, Chicago, IL, USA, pp. 4850–4855.
[23] Li, Z., Soh, Y. and Wen, C. (2005). Switched and Impulsive Systems: Analysis, Design and Applications, Lecture Notes in Control and Information Sciences, Vol. 313, Springer-Verlag, Berlin/Heidelberg.
[24] Lin,W.-S. and Tsai, C.-H. (1999). Neurofuzzy-model-following control of MIMO nonlinear systems, IEE Proceedings: Control Theory and Applications 146(2): 157–164.
[25] Marro, G. and Zattoni, E. (2002). A novel geometric insight into the model matching problem with stability, 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, pp. 2137–2142.
[26] Marro, G. and Zattoni, E. (2005). Self-bounded controlled invariant subspaces in model following by output feedback: Minimal-order solution for nonminimum-phase systems, Journal of Optimization Theory and Applications 125(2): 409–429.
[27] Medina, E.A. and Lawrence, D.A. (2006). Controlled and conditioned invariants for linear impulsive systems, 45th IEEE Conference on Decision and Control, San Diego, CA, USA, pp. 2753–2758.
[28] Medina, E.A. and Lawrence, D.A. (2009). State estimation for linear impulsive systems, 2009 American Control Conference, St. Louis, MO, USA, pp. 1183–1188.
[29] Moog, C.H., Conte, G. and Perdon, A.M. (1991). Model matching and factorization for nonlinear systems: A structural approach, SIAM Journal on Control and Optimization 29(4): 769–785.
[30] Morse, A.S. (1973). Structure and design of linear model following systems, IEEE Transactions on Automatic Control 18(4): 346–354.
[31] Ni, M., Er, M., Leithead, W. and Leith, D. (2001). New approach to the design of robust tracking and model following controllers for uncertain delay systems, IEE Proceedings: Control Theory and Applications 148(6): 472–477.
[32] Noldus, E. (1987). Non-linear model following, Automatica 23(3): 387–391.
[33] Pascual, M., Garcerá, G., Figueres, E. and González-Espín, F. (2008). Robust model-following control of parallel UPS single-phase inverters, IEEE Transactions on Industrial Electronics 55(8): 2870–2883.
[34] Perdon, A.M., Conte, G. and Zattoni, E. (2016a). Necessary and sufficient conditions for asymptotic model matching of switching linear systems, Automatica 64(2): 294–304.
[35] Perdon, A.M., Zattoni, E. and Conte, G. (2016b). Disturbance decoupling with stability for linear impulsive systems, IFAC-PapersOnLine 49(9): 1–6.
[36] Perdon, A.M., Zattoni, E. and Conte, G. (2016c). Model matching with strong stability in switched linear systems, Systems Control Letters 97(11): 98–107.
[37] Rajasekaran, J., Chunodkar, A. and Padhi, R. (2009). Structured model-following neuro-adaptive design for attitude maneuver of rigid bodies, Control Engineering Practice 17(6): 676–689.
[38] Savkin, A.V. and Evans, R.J. (2002). Hybrid Dynamical Systems. Controller and Sensor Switching Problems, Control Engineering Series, Birkhauser, Boston, MA.
[39] Shioemaru, S. and Wu, H. (2001). Decentralized robust tracking and model following for uncertain large-scale interconnected systems, Journal of Optimization Theory and Applications 110(1): 35–52.
[40] Shyu, K.-K. and Chen, Y.-C. (1995). Robust tracking and model following for uncertain time-delay systems, International Journal of Control 62(3): 589–600.
[41] Van der Schaft, A.J. and Schumacher, H. (2000). An Introduction to Hybrid Dynamical Systems, Lecture Notes in Control and Information Sciences, Vol. 251, Springer, Berlin/Heidelberg.
[42] Wang, D., Wu, S. and Okubo, S. (2009). Design of the state predictive model following control system with time-delay, International Journal of Applied Mathematics and Computer Science 19(2): 247–254, DOI: 10.2478/v10006-009-0020-8.
[43] Wang, L., Zhu, J. and Park, J. (2012). A probabilistic approach for model following of Markovian jump linear systems subject to actuator saturation, International Journal of Control, Automation and Systems 10(5): 1042–1048.
[44] Wolovich, W.A. (1972). The use of state feedback for exact model matching, SIAM Journal on Control 10(3): 512–523.
[45] Wonham, W.M. (1985). Linear Multivariable Control: A Geometric Approach, 3rd Edn., Springer-Verlag, New York, NY.
[46] Wu, H. (2004). Adaptive robust tracking and model following of uncertain dynamical systems with multiple time delays, IEEE Transactions on Automatic Control 49(4): 611–616.
[47] Zakharov, A., Zattoni, E., Xie, L., Garcia, O. and Jämsä-Jounela, S.-L. (2013). An autonomous valve stiction detection system based on data characterization, Control Engineering Practice 21(11): 1507–1518.
[48] Zakharov, A., Zattoni, E., Yu, M. and Jämsä-Jounela, S.-L. (2015). A performance optimization algorithm for controller reconfiguration in fault tolerant distributed model predictive control, Journal of Process Control 34(8): 56–69.
[49] Zattoni, E. (2007). Decoupling of measurable signals via self-bounded controlled invariant subspaces: Minimal unassignable dynamics of feedforward units for prestabilized systems, IEEE Transactions on Automatic Control 52(1): 140–143.
[50] Zattoni, E. (2014). Measurable disturbance rejection with stability in continuous-time switched linear systems under dwell-time switching, European Control Conference 2014, Strasbourg, France, pp. 2242–2247.
[51] Zattoni, E. (2016a). Disturbance decoupling with stability in discrete-time switching linear systems: Arbitrary switching, International Journal of Pure and Applied Mathematics 110(1): 227–250.
[52] Zattoni, E. (2016b). Output feedback model matching in linear impulsive systems with control feedthrough: A structural approach, IOP Journal of Physics: Conference Series 783: 1–9.
[53] Zattoni, E. and Marro, G. (2013a). A constructive condition for inaccessible signal rejection with quadratic stability in discrete-time linear switching systems, 52nd IEEE Conference on Decision and Control, Florence, Italy, pp. 4650–4655.
[54] Zattoni, E. and Marro, G. (2013b). Measurable disturbance rejection with quadratic stability in continuous-time linear switching systems, European Control Conference 2013, Zürich, Switzerland, pp. 2157–2162.
[55] Zattoni, E., Perdon, A.M. and Conte, G. (2013a). A geometric approach to output regulation for linear switching systems, IFAC Proceedings Volumes 46(2): 172–177.
[56] Zattoni, E., Perdon, A.M. and Conte, G. (2013b). The output regulation problem with stability for linear switching systems: A geometric approach, Automatica 49(10): 2953–2962.
[57] Zattoni, E., Perdon, A.M. and Conte, G. (2014a). Disturbance decoupling with stability in continuous-time switched linear systems under dwell-time switching, IFAC Proceedings Volumes 47(3): 164–169.
[58] Zattoni, E., Perdon, A.M. and Conte, G. (2014b). Output feedback model matching with strong stability in continuous-time switched linear systems, 22nd Mediterranean Conference on Control and Automation, Palermo, Italy, pp. 525–530.
[59] Zattoni, E., Perdon, A.M. and Conte, G. (2015). Output regulation by error dynamic feedback in linear time-invariant hybrid dynamical systems, 14th European Control Conference, Linz, Austria, pp. 1438–1443.
[60] Zattoni, E., Perdon, A.M. and Conte, G. (2016). Disturbance decoupling with closed-loop modes stability in switched linear systems, IEEE Transactions on Automatic Control 61(10): 3115–3121.
[61] Zattoni, E., Perdon, A.M. and Conte, G. (2017a). Output regulation by error dynamic feedback in hybrid linear systems with state jumps, IFAC-PapersOnLine 50(1): 10808–10815.
[62] Zattoni, E., Perdon, A.M. and Conte, G. (2017b). Output regulation by error dynamic feedback in hybrid systems with periodic state jumps, Automatica 81(7): 322–334.