Minimal positive realizations of linear continuous-time fractional descriptor systems: Two cases of an input-output digraph structure
International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 1, pp. 9-24.

Voir la notice de l'article provenant de la source Library of Science

In the last two decades, fractional calculus has become a subject of great interest in various areas of physics, biology, economics and other sciences. The idea of such a generalization was mentioned by Leibniz and L'Hospital. Fractional calculus has been found to be a very useful tool for modeling linear systems. In this paper, a method for computation of a set of a minimal positive realization of a given transfer function of linear fractional continuous-time descriptor systems has been presented. The proposed method is based on digraph theory. Also, two cases of a possible input-output digraph structure are investigated and discussed. It should be noted that a digraph mask is introduced and used for the first time to solve a minimal positive realization problem. For the presented method, an algorithm was also constructed. The proposed solution allows minimal digraph construction for any one-dimensional fractional positive system. The proposed method is discussed and illustrated in detail with some numerical examples.
Keywords: fractional system, positive system, descriptor system, digraph structure, digraph mask
Mots-clés : układ ułamkowy, układ dodatni, układ deskryptorowy
@article{IJAMCS_2018_28_1_a0,
     author = {Markowski, K. A.},
     title = {Minimal positive realizations of linear continuous-time fractional descriptor systems: {Two} cases of an input-output digraph structure},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {9--24},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a0/}
}
TY  - JOUR
AU  - Markowski, K. A.
TI  - Minimal positive realizations of linear continuous-time fractional descriptor systems: Two cases of an input-output digraph structure
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2018
SP  - 9
EP  - 24
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a0/
LA  - en
ID  - IJAMCS_2018_28_1_a0
ER  - 
%0 Journal Article
%A Markowski, K. A.
%T Minimal positive realizations of linear continuous-time fractional descriptor systems: Two cases of an input-output digraph structure
%J International Journal of Applied Mathematics and Computer Science
%D 2018
%P 9-24
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a0/
%G en
%F IJAMCS_2018_28_1_a0
Markowski, K. A. Minimal positive realizations of linear continuous-time fractional descriptor systems: Two cases of an input-output digraph structure. International Journal of Applied Mathematics and Computer Science, Tome 28 (2018) no. 1, pp. 9-24. http://geodesic.mathdoc.fr/item/IJAMCS_2018_28_1_a0/

[1] Bang-Jensen, J. and Gutin, G. (2009). Digraphs: Theory, Algorithms and Applications, Springer-Verlag, London.

[2] Benvenuti, L. and Farina, L. (2004). A tutorial on the positive realization problem, IEEE Transactions on Automatic Control 49(5): 651–664.

[3] Berman, A. and Plemmons, R.J. (1979). Nonnegative Matrices in the Mathematical Sciences, SIAM, London.

[4] Caputo, M. (1967). Linear models of dissipation whose q is almost frequency independent—II, Geophysical Journal International 13(5): 529, DOI: 10.1111/j.1365-246X.1967.tb02303.x.

[5] Dai, L. (Ed.) (1989). System Analysis via Transfer Matrix, Springer, Berlin/Heidelberg, DOI: 10.1007/BFb0002482.

[6] Das, S. (2011). Functional Fractional Calculus, Springer, Berlin/Heidelberg, DOI: 10.1007/978-3-642-20545-3.

[7] Dodig, M. and Stoi, M. (2009). Singular systems, state feedback problem, Linear Algebra and Its Applications 431(8): 1267–1292, DOI:10.1016/j.laa.2009.04.024.

[8] Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, Wiley-Interscience, New York, NY.

[9] Fornasini, E. and Valcher, M.E. (1997). Directed graphs, 2D state models, and characteristic polynomials of irreducible matrix pairs, Linear Algebra and Its Applications 263: 275–310.

[10] Fornasini, E. and Valcher, M.E. (2005). Controllability and reachability of 2D positive systems: A graph theoretic approach, IEEE Transactions on Circuits and Systems I 52(3): 576–585.

[11] Godsil, C. and Royle, G. (2001). Algebraic Graph Theory, Springer Verlag, New York, NY.

[12] Guang-Ren, D. (2010). Analysis and Design of Descriptor Linear Systems, Springer, New York, NY, DOI: 10.1007/978-1-4419-6397-0.

[13] Horn, R.A. and Johnson, C.R. (1991). Topics in Matrix Analysis, Cambridge University Press, Cambridge.

[14] Hryniów, K. and Markowski, K.A. (2014). Parallel digraphs-building algorithm for polynomial realisations, Proceedings of 15th International Carpathian Control Conference (ICCC), Velke Karlovice, Czech Republic, pp. 174–179, DOI: 10.1109/CarpathianCC.2014.6843592.

[15] Hryniów, K. and Markowski, K.A. (2015). Optimisation of digraphs creation for parallel algorithm for finding a complete set of solutions of characteristic polynomial, Proceedings of the 20th International Conference on Methods and Models in Automation and Robotics, MMAR 2015, Miedzyzdroje, Poland, pp. 1139–1144, DOI: 10.1109/MMAR.2015.7284039.

[16] Hryniów, K. and Markowski, K.A. (2016a). Classes of digraph structures corresponding to characteristic polynomials, in R. Szewczyk et al. (Eds.), Challenges in Automation, Robotics and Measurement Techniques: Proceedings of Automation 2016, Warsaw, Poland, Springer International Publishing, Cham, pp. 329–339, DOI: 10.1007/978-3-319-29357-8 30.

[17] Hryniów, K. and Markowski, K.A. (2016b). Parallel digraphs-building computer algorithm for finding a set of characteristic polynomial realisations of dynamic system, Journal of Automation, Mobile Robotics and Intelligent Systems 10(03): 38–51, DOI: 10.14313/JAMRIS 3-2016/23.

[18] Ionescu, C.M., Kosinski, W. and De Keyser, R. (2010). Viscoelasticity and fractal structure in a model of human lungs, Archives of Mechanics 62(1): 21–48.

[19] Kaczorek, T. (2001). Positive 1D and 2D Systems, Springer Verlag, London.

[20] Kaczorek, T. (2007). Polynomial and Rational Matrices, Springer Verlag, London.

[21] Kaczorek, T. (2011). Singular fractional linear systems and electrical circuits, International Journal of Applied Mathematics and Computer Science 21(2): 379–384, DOI: 10.2478/v10006-011-0028-8.

[22] Kaczorek, T. and Sajewski, L. (2014). The Realization Problem for Positive and Fractional Systems, Springer International Publishing, Berlin, DOI: 10.1007/978-3-319-04834-5.

[23] Kublanovskaya, V.N. (1983). Analysis of singular matrix pencils, Journal of Soviet Mathematics 23(1): 1939–1950, DOI: 10.1007/BF01093276.

[24] Lewis, F. (1984). Descriptor systems: Decomposition into forward and backward subsystems, IEEE Transactions on Automatic Control 29(2): 167–170, DOI: 10.1109/TAC.1984.1103467.

[25] Lewis, F.L. (1986). A survey of linear singular systems, Circuits, Systems and Signal Processing 5(1): 3–36, DOI: 10.1007/BF01600184.

[26] Luenberger, D.G. (1979). Introduction to Dynamic Systems: Theory, Models, and Applications, Wiley, New York, NY.

[27] Machado, J. and Lopes, A.M. (2015). Fractional state space analysis of temperature time series, Fractional Calculus and Applied Analysis 18(6): 1518–1536.

[28] Machado, J., Mata, M.E. and Lopes, A.M. (2015). Fractional state space analysis of economic systems, Entropy 17(8): 5402–5421.

[29] Magin, R., Ortigueira, M.D., Podlubny, I. and Trujillo, J. (2011). On the fractional signals and systems, Signal Processing 91(3): 350–371.

[30] Markowski, K.A. (2016). Digraphs structures corresponding to minimal realisation of fractional continuous-time linear systems with all-pole and all-zero transfer function, 2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, pp. 1–6, DOI: 10.1109/AQTR.2016.7501367.

[31] Markowski, K.A. (2017a). Determination of minimal realisation of one-dimensional continuous-time fractional linear system, International Journal of Dynamics and Control 5(1): 40–50, DOI: 10.1007/s40435-016-0232-3.

[32] Markowski, K.A. (2017b). Realisation of continuous-time (fractional) descriptor linear systems, in R. Szewczyk et al. (Eds.), Automation 2017, Springer International Publishing, Cham, pp. 204–214, DOI: 10.1007/978-3-319-54042-9 19.

[33] Markowski, K.A. (2017c). Realisation of linear continuous-time fractional singular systems using digraph-based method: First approach, Journal of Physics: Conference Series 783(1): 012052, DOI: 10.1088/1742-6596/783/1/012052.

[34] Markowski, K.A. (2018). Classes of digraphs structures with weights corresponding to 1D fractional systems, International Conference on Automation, Quality and Testing, Robotics, AQTR 2018, Cluj-Napoca, Romania, (submitted).

[35] Markowski, K.A. and Hryniów, K. (2017a). Expansion of digraph size of 1-D fractional system with delay, in A. Babiarz et al. (Eds.), Theory and Applications of Non-integer Order Systems, Springer International Publishing, Cham, pp. 467–476, DOI: 10.1007/978-3-319-45474-0 41.

[36] Markowski, K.A. and Hryniów, K. (2017b). Finding a set of (A, B, C, D) realisations for fractional one-dimensional systems with digraph-based algorithm, in A. Babiarz et al. (Eds.), Theory and Applications of Non-integer Order Systems, Springer International Publishing, Cham, pp. 357–368, DOI: 10.1007/978-3-319-45474-0 32.

[37] Miller, K. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY.

[38] Mitkowski, W. (2008). Dynamical properties of Metzler systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 309–312.

[39] Muresan, C.I., Dulf, E.H. and Prodan, O. (2016a). A fractional order controller for seismic mitigation of structures equipped with viscoelastic mass dampers, Journal of Vibration and Control 22(8): 1980–1992, DOI: 10.1177/1077546314557553.

[40] Muresan, C.I., Dutta, A., Dulf, E.H., Pinar, Z., Maxim, A. and Ionescu, C.M. (2016b). Tuning algorithms for fractional order internal model controllers for time delay processes, International Journal of Control 89(3): 579–593, DOI: 10.1080/00207179.2015.1086027.

[41] Nishimoto, K. (1984). Fractional Calculus, Decartess Press, Koriama.

[42] Ortigueira, M.D. (2011). Fractional Calculus for Scientists and Engineers, Academic Press, Springer, Dordrecht, DOI: 10.1007/978-94-007-0747-4.

[43] Petras, I., Sierociuk, D. and Podlubny, I. (2012). Identification of parameters of a half-order system, IEEE Transactions on Signal Processing 60(10): 5561–5566.

[44] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.

[45] Podlubny, I., Skovranek, T. and Datsko, B. (2014). Recent advances in numerical methods for partial fractional differential equations, 2014 15th International Carpathian Control Conference (ICCC), Velke Karlovice, Czech Republic, pp. 454–457.

[46] Sajewski, L. (2012). Positive realization of fractional continuous-time linear systems with delays, Pomiary Automatyka Robotyka 2: 413–417.

[47] Sikora, B. (2016). Controllability criteria for time-delay fractional systems with a retarded state, International Journal of Applied Mathematics and Computer Science 26(3): 521–531, DOI: 10.1515/amcs-2016-0036.

[48] Vandoorn, T.L., Ionescu, C.M., De Kooning, J.D.M., De Keyser, R. and Vandevelde, L. (2013). Theoretical analysis and experimental validation of single-phase direct versus cascade voltage control in islanded microgrids, IEEE Transactions on Industrial Electronics 60(2): 789–798.