Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_4_a9, author = {Rasc\'on, R. and Rosas, D. and Hernandez-Balbuena, D.}, title = {Regulation control of an underactuated mechanical system with discontinuous friction and backlash}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {785--797}, publisher = {mathdoc}, volume = {27}, number = {4}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_4_a9/} }
TY - JOUR AU - Rascón, R. AU - Rosas, D. AU - Hernandez-Balbuena, D. TI - Regulation control of an underactuated mechanical system with discontinuous friction and backlash JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 785 EP - 797 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_4_a9/ LA - en ID - IJAMCS_2017_27_4_a9 ER -
%0 Journal Article %A Rascón, R. %A Rosas, D. %A Hernandez-Balbuena, D. %T Regulation control of an underactuated mechanical system with discontinuous friction and backlash %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 785-797 %V 27 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_4_a9/ %G en %F IJAMCS_2017_27_4_a9
Rascón, R.; Rosas, D.; Hernandez-Balbuena, D. Regulation control of an underactuated mechanical system with discontinuous friction and backlash. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 4, pp. 785-797. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_4_a9/
[1] Adetola, V., DeHaan, D. and Guay, M. (2009). Adaptive model predictive control for constrained nonlinear systems, Systems Control Letters 58(5): 320–326.
[2] Aguilar, L., Orlov, Y. and Acho, L. (2003). Nonlinear H∞ control of nonsmooth time varying systems with application to friction mechanical manipulators, Automatica 39(9): 1531–1542.
[3] Brahim, A.B., Dhahri, S., Hmida, F.B. and Sellami, A. (2015). An H∞ sliding mode observer for Takagi–Sugeno nonlinear systems with simultaneous actuator and sensor faults, International Journal of Applied Mathematics and Computer Science 25(3): 547–559, DOI: 10.1515/amcs-2015-0041.
[4] Branicky, M. (1998). Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Transactions on Automatic Control 43(4): 475–482.
[5] Brogliato, B. (1999). Nonsmooth Mechanics, Springer, London.
[6] Brogliato, B., Niculescu, S.-I. and Orhant, P. (1997). On the control of finite-dimensional mechanical systems with unilateral constraints, IEEE Transactions on Automatic Control 42(2): 200–215.
[7] Castaños, F. and Fridman, L. (2006). Analysis and design of integral sliding manifolds for systems with unmatched perturbations, IEEE Transactions on Automatic Control 51(5): 853–858.
[8] Castaños, F. and Fridman, L. (2011). Dynamic switching surfaces for output sliding mode control: An H∞ approach, Automatica 47(9): 1957–1961.
[9] Chang, Y.-C. and Lee, C.-H. (1999). Robust tracking control for constrained robots actuated by DC motors without velocity measurements, IEE Proceedings—Control Theory and Applications 146(2): 147–156.
[10] Chiu, C.-S., Lian, K.-Y. and Wu, T.-C. (2004). Robust adaptive motion/force tracking control design for uncertain constrained robot manipulators, Automatica 40(12): 2111–2119.
[11] Christophersen, F.J. (2007). Optimal Control of Constrained Piecewise Affine Systems, Lecture Notes in Control and Information Sciences, Springer, Berlin/Heidelberg.
[12] Doyle, J.C., Glover, K., Khargonekar, P.P. and Francis, B.A. (1989). State-space solutions to standard H2 and H∞ control problems, IEEE Transactions on Automatic Control 34(8): 831–847.
[13] Durmaz, B., Özgören, M. K. and Salamci,M. U. (2011). Sliding mode control for non-linear systems with adaptive sliding surfaces, Transactions of the Institute of Measurement and Control 34(1): 56–90.
[14] Fallaha, C.J., Saad, M., Kanaan, H.Y. and Al-Haddad, K. (2011). Sliding-mode robot control with exponential reaching law, IEEE Transactions on Industrial Electronics 58(2): 600–610.
[15] Filippov, A.F. (1988). Differential Equations with Discontinuous Right-Handsides, Kluwer, Dordercht.
[16] Ghafari-Kashani, A., Faiz, J. and Yazdanpanah, M. (2010). Integration of non-linear H∞ and sliding mode control techniques for motion control of a permanent magnet synchronous motor, IET Electric Power Applications 4(4): 267–280.
[17] Isidori, A. (2000). A tool for semiglobal stabilization of uncertain non minimum-phase nonlinear systems via output feedback, IEEE Transactions on Automatic Control 48(10): 1817–1827.
[18] Isidori, A. and Astolfi, A. (1992). Disturbance attenuation and H∞-control via measurement feedback in nonlinear systems, IEEE Transactions on Automatic Control 37(9): 1283–1293.
[19] Kazerooni, H. (1990). Contact instability of the direct drive robot when constrained by a rigid environment, IEEE Transactions on Automatic Control 35(6): 710–714.
[20] Khalil, H. (2002). Nonlinear Systems, Prentice Hall, Upper Saddle River, NJ.
[21] Kwakernaak, H. (1993). Robust control and H∞-optimization–tutorial paper, Automatica 29(2): 255–273.
[22] Leine, R. I. and Van de Wouw, N. (2010). Stability and Convergence of Mechanical Systems with Unilateral Constraints, Springer, Berlin.
[23] Lian, J. and Zhao, J. (2010). Robust H-infinity integral sliding mode control for a class of uncertain switched nonlinear systems, Journal of Control Theory and Applications 8(4): 521–526.
[24] Lian, K.-Y. and Lin, C.-R. (1998). Sliding-mode motion/force control of constrained robots, IEEE Transactions on Automatic Control 43(8): 1101–1103.
[25] Luo, N., Tan, Y. and Dong, R. (2015). Observability and controllability analysis for sandwich systems with backlash, International Journal of Applied Mathematics and Computer Science 25(4): 803–814, DOI: 10.1515/amcs-2015-0057.
[26] Mansard, N. and Khatib, O. (2008). Continuous control law from unilateral constraint, IEEE International Conference on Robotics and Automation, ICRA 2008, Pasadena, CA, USA, pp. 3359–3364.
[27] Menini, L. and Tornambe, A. (2001). Dynamic position feedback stabilisation of multidegrees-of-freedom linear mechanical systems subject to nonsmooth impacts, IEE Proceedings—Control Theory and Applications 148(6): 488–496.
[28] Orlov, Y., Aoustin, Y. and Chevallereau, C. (2011). Finite time stabilization of a perturbed double integrator. I: Continuous sliding mode-based output feedback synthesis, IEEE Transactions on Automatic Control 56(3): 614–618.
[29] Paden, B. and Sastry, S. (1987). A calculus for computing Filippov’s differential inclusion with application to the variable structure control of robot manipulators, IEEE Transactions on Circuits and Systems 34(1): 73–81.
[30] Perez, M., Jimenez, E. and Camacho, E. (2010). Design of an explicit constrained predictive sliding mode controller, IET Control Theory Applications 4(4): 552–562.
[31] Potini, A., Tornambe, A., Menini, L., Abdallah, C. and Dorato, P. (2006). Finite-time control of linear mechanical systems subject to non-smooth impacts, 14th Mediterranean Conference on Control and Automation, MED’06, Ancona, Italy, pp. 1–5.
[32] Rascón, R., Alvarez, J. and Aguilar, L. (2012). Sliding mode control with H∞: Attenuator for unmatched disturbances in a mechanical system with friction and a force constraint, 12th International Workshop on Variable Structure Systems (VSS), Mumbai, Maharashtra, India, pp. 434–439.
[33] Rascón, R., Alvarez, J. and Aguilar, L.T. (2014). Control robusto de posici´on para un sistema mec´anico subactuado con fricción y holgura elástica, Revista Iberoamericana de Automática e Informática Industrial 11(3): 275–284.
[34] Rascón, R., Alvarez, J. and Aguilar, L.T. (2016). Discontinuous H∞ control of underactuated mechanical systems with friction and backlash, International Journal of Control, Automation and Systems 14(5): 1213–1222.
[35] Sabanovic, A., Elitas, M. and Ohnishi, K. (2008). Sliding modes in constrained systems control, IEEE Transactions on Industrial Electronics 55(9): 3332–3339.
[36] Safonov, M.G., Limebeer, D.J.N. and Chiang, R.Y. (1989). Simplifying the H∞ theory via loop-shifting, matrix-pencil and descriptor concepts, International Journal of Control 50(6): 2467–2488.
[37] Shevitz, D. and Paden, B. (1994). Lyapunov stability theory of nonsmooth systems, IEEE Transactions on Automatic Control 39(9): 1910–1914.
[38] Tseng, C.-S. (2005). Mixed H2/H∞ adaptive tracking control design for uncertain constrained robots, Asian Journal of Control 7(3): 296–309.
[39] Utkin, V. (1978). Sliding Modes and Their Applications, Mir, Moscow.
[40] Utkin, V. (1992). Sliding Modes in Control Optimization, Springer, Berlin.
[41] Virgin, L.N. (2000). Introduction to Experimental Nonlinear Dynamics: A Case Study in Mechanical Vibration, Cambridge University Press, New York, NY.
[42] Zhu, J. and Khayati, K. (2015). A new approach for adaptive sliding mode control: Integral/exponential gain law, Transactions of the Institute of Measurement and Control 38(4): 385–394.