Actuator failure compensation for two linked 2WD mobile robots based on multiple-model control
International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 4, pp. 763-776.

Voir la notice de l'article provenant de la source Library of Science

This paper develops a new actuator failure compensation scheme for two linked two-wheel drive (2WD) mobile robots based on multiple-model control. First, a configuration of two linked 2WD robots is described, and their kinematics and dynamics are modeled. Then, a multiple-model based failure compensation scheme is developed to compensate for actuator failures, consisting of a kinematic controller, multiple dynamic controllers and a control switching mechanism, which ensures system stability and asymptotic tracking properties. Finally, simulation results verify the effectiveness of the proposed failure compensation control system.
Keywords: actuator failure, multiple model control, physically linked robot, two wheel drive
Mots-clés : awaria siłownika, sterowanie wielomodelowe, robot połączony
@article{IJAMCS_2017_27_4_a7,
     author = {Ma, Y. and Cocquempot, V. and El Badaoui El Najjar, M. and Jiang, B.},
     title = {Actuator failure compensation for two linked {2WD} mobile robots based on multiple-model control},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {763--776},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_4_a7/}
}
TY  - JOUR
AU  - Ma, Y.
AU  - Cocquempot, V.
AU  - El Badaoui El Najjar, M.
AU  - Jiang, B.
TI  - Actuator failure compensation for two linked 2WD mobile robots based on multiple-model control
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2017
SP  - 763
EP  - 776
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_4_a7/
LA  - en
ID  - IJAMCS_2017_27_4_a7
ER  - 
%0 Journal Article
%A Ma, Y.
%A Cocquempot, V.
%A El Badaoui El Najjar, M.
%A Jiang, B.
%T Actuator failure compensation for two linked 2WD mobile robots based on multiple-model control
%J International Journal of Applied Mathematics and Computer Science
%D 2017
%P 763-776
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_4_a7/
%G en
%F IJAMCS_2017_27_4_a7
Ma, Y.; Cocquempot, V.; El Badaoui El Najjar, M.; Jiang, B. Actuator failure compensation for two linked 2WD mobile robots based on multiple-model control. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 4, pp. 763-776. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_4_a7/

[1] Akhtar, A., Nielsen, C. and Waslander, S. (2015). Path following using dynamic transverse feedback linearization for car like robots, IEEE Transactions on Robotics 31(2): 269–279.

[2] Aref, M., Oftadeh, R., Ghabcheloo, R. and Mattila, J. (2015). Fault tolerant control architecture design for mobile manipulation in scientific facilities, International Journal of Advanced Robotic Systems 12(4): 1–12.

[3] Bilski, A. and Wojciechowski, J. (2016). Automatic parametric fault detection in complex analog systems based on a method of minimum node selection, International Journal of Applied Mathematics and Computer Science 26(3): 655–668, DOI: 10.1515/amcs-2016-0045.

[4] Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2006). Diagnosis and Fault-Tolerant Control, Springer-Verlag, Berlin/Heidelberg.

[5] Campion, G., Bastin, G. and D’Andrea-Novel, B. (1996). Structural properties and classification of kinematic and dynamic models of wheeled mobile robots, IEEE Transactions on Robotics and Automation 12(1): 47–62.

[6] Canudas de Wit, C., NDoudi-Likoho, A. and Micaelli, A. (1997). Nonlinear control for a train-like vehicle, International Journal of Robotics and Research 16(3): 300–319.

[7] Canudas de Wit, C., Siciliano, B. and Bastin, G. (2012). Theory of Robot Control, Springer-Verlag, London.

[8] Caracciolo, L., Luca, A. and Iannitti, S. (1999). Trajectory tracking control of a four wheel differentially driven mobile robot, Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, MI, USA, pp. 2632–2638.

[9] Dixon, W., Dawson, D., Zergeroglu, E. and Behal, A. (2001). Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics 31(3): 341–352.

[10] Do, K., Jiang, Z. and Pan, J. (2004). A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots, IEEE Transactions on Robotics and Automation 20(3): 589–594.

[11] Efimov, D., Cieslak, J. and Henry, D. (2013). Supervisory fault-tolerant control with mutual performance optimization, International Journal of Adaptive Control and Signal Processing 17(4): 251–279.

[12] Fierro, R. and Lewis, F. (1995). Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics, Proceedings of the 34th Conference on Decision and Control, New Orleans, LO, USA, pp. 3805–3810.

[13] Fourlas, G., Karras, G. and Kyriakopoulos, K. (2015). Fault tolerant control for a 4-wheel skid steering mobile robot, 26th International Workshop on Principles of Diagnosis, Paris, France, pp. 177–183.

[14] Franzè, G., Tedesco, F. and Famularo, D. (2015). Actuator fault tolerant control: A receding horizon set-theoretic approach, IEEE Transactions on Automatic Control 80(8): 2225–2230.

[15] Fukao, T., Nakagawa, H. and Adachi, N. (2000). Adaptive tracking control of a nonholonomic mobile robot, IEEE Transactions on Robotics and Automation 16(6): 609–615.

[16] Ge, S., Wang, Z. and Lee, T. (2003). Adaptive stabilization of uncertain nonholonomic system by state and output feedback, Automatica 39(8): 1451–1460.

[17] Goel, P., Dedeoglu, G., Roumeliotis, S. and Sukhatme, G. (2000). Fault detection and identification in a mobile robot using multiple estimation and neural network, Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, pp. 2302–2309.

[18] González-Sierra, J., Aranda-Bricaire, E., Hernández-Mendoza, D. and Santiaguillo-Salinas, J. (2014). Emulation of n-trailer systems through differentially driven multi-agent systems: Continuous- and discrete-time approaches, Journal of Intelligent and Robotic Systems 75(1): 159–146.

[19] Hamayun, M.T., Edwards, C., Alwi, H. and Bajodah, A. (2015). A fault tolerant direct control allocation scheme with integral sliding modes, International Journal of Applied Mathematics and Computer Science 25(1): 93–102, DOI: 10.1515/amcs-2015-0007.

[20] Hassanabadi, A.H., Shafiee, M. and Puig, V. (2016). Robust fault detection of singular LPV systems with multiple time-varying delays, International Journal of Applied Mathematics and Computer Science 26(1): 45–61, DOI: 10.1515/amcs-2016-0004.

[21] Huang, J., Wen, C., Wang, W. and Jiang, Z. (2014). Adaptive output feedback tracking control of a nonholonomic mobile robot, Automatica 50(3): 821–831.

[22] Ji, M. and Sarkar, N. (2007). Supervisory fault adaptive control of a mobile robot and its application in sensor-fault accommodation, IEEE Transactions on Robotics 23(1): 174–178.

[23] Ji,M., Zhang, Z., Biswas, G. and Sarkar, N. (2003). Hybrid fault adaptive control of a wheeled mobile robot, IEEE/ASME Transactions on Mechatronics 8(2): 226–233.

[24] Khalaji, A. and Moosavian, S. (2014). Robust adaptive controller for a tractor-trailer mobile robot, IEEE/ASME Transactions on Mechatronics 19(3): 943–953.

[25] Kim, T., Park, J. and Kim, H. (2015). Actuator reconfiguration control of a robotic vehicle with four independent wheel driving, 15th International Conference on Control, Automation and Systems, Busan, Korea, pp. 1767–1770.

[26] Koh, M., Noton, M. and Khoo, S. (2012). Robust fault-tolerant leader-follower control of four-wheel-steering mobile robots using terminal sliding mode, Australian Journal of Electrical and Electronics Engineering 9(4): 247–254.

[27] Kozłowski, K. and Pazderski, D. (2004). Modeling and control of a 4-wheel skid-steering mobile robot, International Journal of Applied Mathematics and Computer Science 14(4): 477–496.

[28] Li, X. and Yang, G. (2012). Robust adaptive fault-tolerant control for uncertain linear systems with actuator failures, IET Control Theory and Applications 6(10): 1544–1551.

[29] Michałek, M. (2014). A highly scalable path-following controller for N-trailers with off-axle hitching, Control Engineering Practice 29: 61–73.

[30] Michałek, M. (2017). Cascade-like modular tracking controller for non-standard N-trailer, IEEE Transactions on Control System Technology 25(2): 619–627.

[31] Morin, P. and Samson, C. (2012). Feedback control of the general two-trailers system with the transverse function approach, IEEE 51st Annual Conference on Decision and Control, Maui, HI, USA, pp. 1003–1010.

[32] Narendra, K. and Balakrishnan, J. (1997). Adaptive control using multiple-models, IEEE Transactions on Automatic Control 42(2): 171–187.

[33] Patton, R., Chen, L. and Klinkhieo, S. (2012). An LPV pole-placement approach to friction compensation as an FTC problem, International Journal of Applied Mathematics and Computer Science 22(1): 149–160, DOI: 10.2478/v10006-012-0011-z.

[34] Ritzen, P., Roebroek, E., Van de Wouw, N., Jiang, Z. and Nijmeijer, H. (2016). Trailer steering control of a tractor-trailer robot, IEEE Transactions on Control System Technology 24(4): 1240–1252.

[35] Rotondo, D., Nejjari, F. and Puig, V. (2015). Robust quasi-LPV model reference FTC of a quadrotor UAV subject to actuator faults, International Journal of Applied Mathematics and Computer 25(1): 7–22, DOI: 10.1515/amcs-2015-0001.

[36] Rotondo, D., Puig, V., Nejjari, F. and Romera, J. (2014). A fault-hiding approach for the switching quasi-LPV fault-tolerant control of a four-wheeled omnidirectional mobile robot, IEEE Transactions on Industrial Electronics 62(6): 3932–3944.

[37] Skoundrianos, E. and Tzafestas, S. (2004). Finding fault: Fault diagnosis on the wheels of a mobile robot using local model neural networks, IEEE Robotics and Automation Magazine 11(3): 83–90.

[38] Sørdalen, O. and Wichlund, K. (1993). Exponential stabilization of a car with n trailers, 32nd Conference on Decison Control, San Antonio, TX, USA, pp. 978–983.

[39] Tan, C., Yang, H. and Tao, G. (2016). A multiple-model MRAC scheme for multivariable systems with matching uncertainties, Information Sciences 360(10): 217–230.

[40] Tao, G. (2003). Adaptive Control Design and Analysis, John Wiley Sons, Hoboken, NJ.

[41] Tilbury, D., Sørdalen, O., Bushnell, L. and Sastry, S. (1995). A multisteering trailer system: Conversion into chained form using feedback, IEEE Transactions on Robotics and Automation 11(6): 807–818.

[42] Yang, H., Fan, X., Shi, P. and Hua, C. (2016). Nonlinear control for tracking and obstacle avoidance of a wheeled mobile robot with nonholonomic constraint, IEEE Transactions on Control Systems Technology 24(2): 741–746.

[43] Yang, X. and Maciejowski, J. (2015). Fault tolerant control using Gaussian processes and model predictive control, International Journal of Applied Mathematics and Computer Science 25(1): 133–148, DOI: 10.1515/amcs-2015-0010.

[44] Ye, D. and Yang, G. (2006). Adaptive fault-tolerant tracking control against actuator faults with application to flight control, IEEE Transactions on Control Systems Technology 14(6): 1088–1096.

[45] Yu, X. and Jiang, J. (2015). A survey of fault-tolerant controllers based on safety-related issues, Annual Reviews in Control 39: 46–57.

[46] Yuan, J., Sun, F. and Huang, Y. (2015). Trajectory generation and tracking control for double-steering tractor-trailer mobile robots with on-axle hitching, IEEE/ASME Transactions on Mechatronics 62(12): 7665–7677.

[47] Zhang, X. and Cocquempot, V. (2014). Fault tolerant control for an electric 4WD vehicle’s path tracking with active fault diagnosis, 19th IFAC World Congress, Cape Town, South Africa, pp. 6728–6734.

[48] Zhang, Y. and Jiang, J. (2008). Bibliographical review on reconfigurable fault-tolerant control systems, Annual Reviews in Control 32(2): 229–252.

[49] Zou, A. and Kumar, K. (2012). Robust attitude coordination control for spacecraft formation flying under actuator failures, AIAA Journal of Guidance, Control and Dynamics 35(4): 1247–1255.