Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_4_a2, author = {Bilalli, B. and Abell\'o, A. and Aluja-Banet, T.}, title = {On the predictive power of meta-features in {OpenML}}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {697--712}, publisher = {mathdoc}, volume = {27}, number = {4}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_4_a2/} }
TY - JOUR AU - Bilalli, B. AU - Abelló, A. AU - Aluja-Banet, T. TI - On the predictive power of meta-features in OpenML JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 697 EP - 712 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_4_a2/ LA - en ID - IJAMCS_2017_27_4_a2 ER -
%0 Journal Article %A Bilalli, B. %A Abelló, A. %A Aluja-Banet, T. %T On the predictive power of meta-features in OpenML %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 697-712 %V 27 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_4_a2/ %G en %F IJAMCS_2017_27_4_a2
Bilalli, B.; Abelló, A.; Aluja-Banet, T. On the predictive power of meta-features in OpenML. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 4, pp. 697-712. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_4_a2/
[1] Bensusan, H. and Giraud-Carrier, C. (2000a). Casa batló is in passeig de grácia or how landmark performances can describe tasks, Proceedings of the ECML-00 Workshop on Meta-Learning: Building Automatic Advice Strategies for Model Selection and Method Combination, Barcelona, Spain, pp. 29–46.
[2] Bensusan, H. and Giraud-Carrier, C.G. (2000b). Discovering task neighbourhoods through landmark learning performances, Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery, Lyon, France, pp. 325–330.
[3] Bensusan, H., Giraud-Carrier, C.G. and Kennedy, C.J. (2000). A higher-order approach to meta-learning, Proceedings of the International Conference on Inductive Logic Programming, London, UK.
[4] Bensusan, H. and Kalousis, A. (2001). Estimating the predictive accuracy of a classifier, in M. Bramer (Ed.), Principles of Data Mining. Undergraduate Topics in Computer Science, Springer, London, pp. 25–36.
[5] Bilalli, B., Abelló, A., Aluja-Banet, T. and Wrembel, R. (2016). Towards intelligent data analysis: The metadata challenge, Proceedings of the International Conference on Internet of Things and Big Data, Rome, Italy, pp. 331–338.
[6] Bilalli, B., Abelló, A., Aluja-Banet, T. and Wrembel, R. (2017). Intelligent assistance for data pre-processing, Computer Standards Interfaces, DOI: 10.1016/j.csi.2017.05.004, (in press).
[7] Brazdil, P., Gama, J.A. and Henery, B. (1994). Characterizing the applicability of classification algorithms using meta-level learning, Proceedings of the European Conference on Machine Learning, Catania, Italy, pp. 83–102.
[8] Brazdil, P., Giraud-Carrier, C., Soares, C. and Vilalta, R. (2008). Metalearning: Applications to Data Mining, 1st Edn., Springer Publishing Company, Berlin.
[9] Castiello, C., Castellano, G. and Fanelli, A.M. (2005). Meta-data: Characterization of input features for meta-learning, Proceedings of the International Conference on Modeling Decisions for Artificial Intelligence, Tsukuba, Japan, pp. 457–468.
[10] Fayyad, U.M., Piatetsky-Shapiro, G. and Smyth, P. (1996). From data mining to knowledge discovery in databases, AI Magazine 17(3): 1–34.
[11] Fürnkranz, J. and Petrak, J. (2001). An evaluation of landmarking variants, Proceedings of the ECML/PKDD Workshop on Integrating Aspects of Data Mining, Decision Support and Meta-Learning, Freiburg, Germany, pp. 57–68.
[12] Giraud-Carrier, C. (2005). The data mining advisor: Meta-learning at the service of practitioners, Proceedings of the International Conference on Machine Learning and Applications, Los Angeles, CA, USA, pp. 113–119.
[13] Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology 24(6): 417–441.
[14] Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis, Psychometrika 23(3): 187–200.
[15] Kalousis, A. and Hilario, M. (2001). Feature selection for meta-learning, Proceedings of the International Conference on Knowledge Discovery and Data Mining, Hong Kong, China, pp. 222–233.
[16] Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection, Proceedings of the International Joint Conference on Artificial Intelligence, Montréal, Québec, Canada, pp. 1137–1143.
[17] Lemke, C., Budka, M. and Gabrys, B. (2015). Metalearning: A survey of trends and technologies, Artificial Intelligence Review 44(1): 117–130.
[18] Michie, D., Spiegelhalter, D.J., Taylor, C.C. and Campbell, J. (Eds.) (1994). Machine Learning, Neural and Statistical Classification, Ellis Horwood, Chichester.
[19] Morchid, M., Dufour, R., Bousquet, P., Linarès, G. and Torres-Moreno, J. (2014). Feature selection using principal component analysis for massive retweet detection, Pattern Recognition Letters 49: 33–39.
[20] Peng, Y., Flach, P.A., Soares, C. and Brazdil, P. (2002). Improved dataset characterisation for meta-learning, Proceedings of the 5th International Conference on Discovery Science, Lübeck, Germany, pp. 141–152.
[21] Pfahringer, B., Bensusan, H. and Giraud-Carrier, C.G. (2000). Meta-learning by landmarking various learning algorithms, Proceedings of the 17th International Conference on Machine Learning, San Francisco, CA, USA, pp. 743–750.
[22] Reif, M., Shafait, F. and Dengel, A. (2012). Meta2-features: Providing meta-learners more information, 35th German Conference on Artificial Intelligence, Staarbrücken, Germany.
[23] Reif, M., Shafait, F., Goldstein, M., Breuel, T. and Dengel, A. (2014). Automatic classifier selection for non-experts, Pattern Analysis and Applications 17(1): 83–96.
[24] Rendell, L., Seshu, R. and Tcheng, D. (1987). Layered concept-learning and dynamically-variable bias management, Proceedings of the International Joint Conference on Artificial Intelligence, Milan, Italy, pp. 308–314.
[25] Serban, F., Vanschoren, J., Kietz, J. and Bernstein, A. (2013). A survey of intelligent assistants for data analysis, ACM Computing Surveys 45(3): 31:1–31:35.
[26] Sohn, S.Y. (1999). Meta analysis of classification algorithms for pattern recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence 21(11): 1137–1144.
[27] Todorovski, L., Brazdil, P. and Soares, C. (2000). Report on the experiments with feature selection in meta-level learning, Proceedings of the PKDD Workshop on Data Mining, Lyon, France, pp. 27–39.
[28] Todorovski, L. and Dzeroski, S. (1999). Experiments in meta-level learning with ILP, Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery, Prague, Czech Republic, pp. 98–106.
[29] Vanschoren, J., van Rijn, J.N., Bischl, B. and Torgo, L. (2014). OpenML: Networked science in machine learning, ACM SIGKDD Explorations Newsletter 15(2): 49–60.