Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_4_a12, author = {Gdawiec, K.}, title = {Procedural generation of aesthetic patterns from dynamics and iteration processes}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {827--837}, publisher = {mathdoc}, volume = {27}, number = {4}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_4_a12/} }
TY - JOUR AU - Gdawiec, K. TI - Procedural generation of aesthetic patterns from dynamics and iteration processes JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 827 EP - 837 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_4_a12/ LA - en ID - IJAMCS_2017_27_4_a12 ER -
%0 Journal Article %A Gdawiec, K. %T Procedural generation of aesthetic patterns from dynamics and iteration processes %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 827-837 %V 27 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_4_a12/ %G en %F IJAMCS_2017_27_4_a12
Gdawiec, K. Procedural generation of aesthetic patterns from dynamics and iteration processes. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 4, pp. 827-837. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_4_a12/
[1] Agarwal, R., O’Regan, D. and Sahu, D. (2007). Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, Journal of Nonlinear and Convex Analysis 8(1): 61–79.
[2] Anderson, D. and Wood, Z. (2008). User driven two-dimensional computer-generated ornamentation, in G. Bebis et al. (Eds.), Advances in Visual Computing: 4th International Symposium, ISVC 2008. Proceedings, Part I, Springer, Berlin/Heidelberg, pp. 604–613.
[3] Ashish, Rani, M. and Chugh, R. (2014). Julia sets and Mandelbrot sets in Noor orbit, Applied Mathematics and Computation 228: 615–631.
[4] Chen, Y.-S., Shie, J. and Chen, L.-H. (2012). A NPR system for generating floral patterns based on l-system, Bulletin of Networking, Computing, Systems, and Software 1(1): 38–41.
[5] Chung, K. and Chan, H. (1993). Symmetrical patterns from dynamics, Computer Graphics Forum 12(1): 33–40.
[6] Chung, K. and Chan, H. (1995). Spherical symmetries from dynamics, Computers Mathematics with Applications 29(7): 67–81.
[7] Chung, K., Chan, H. and Wang, B. (2001). Tessellations in three-dimensional hyperbolic space from dynamics and the quaternions, Chaos, Solitons Fractals 12(7): 1181–1197.
[8] Ebert, D., Musgrave, F., Peachey, D., Perlin, K. and Worley, S. (2002). Texturing and Modeling: A Procedural Approach, 3rd Edition, Morgan Kaufmann, San Francisco, CA.
[9] Gdawiec, K. (2013). Polynomiography and various convergence tests, in V. Skala (Ed.), WSCG 2013 Communication Papers Proceedings, Vaclav Skala—Union Agency, Plzen, pp. 15–20.
[10] Gdawiec, K. (2017). Inversion fractals and iteration processes in the generation of aesthetic patterns, Computer Graphics Forum 36(1): 35–45.
[11] Gdawiec, K. and Kotarski, W. (2017). Polynomiography for the polynomial infinity norm via Kalantari’s formula and nonstandard iterations, Applied Mathematics and Computation 307: 17–30.
[12] Gdawiec, K., Kotarski, W. and Lisowska, A. (2015). Polynomiography based on the non-standard Newton-like root finding methods, Abstract and Applied Analysis 2015, Article ID: 797594.
[13] Greenfield, G. (2016). Turing-like patterns from cellular automata, in E. Torrence et al. (Eds.), Proceedings of Bridges 2016: Mathematics, Music, Art, Architecture, Education, Culture, Tessellations Publishing, Phoenix, AZ, pp. 151–158.
[14] Horne, C. (2000). Geometric Symmetry in Patterns and Tilings, CRC Press, Boca Raton, FL.
[15] Jia, C. and Ming-Xi, T. (2013). Integrating shape grammars into a generative system for Zhuang ethnic embroidery design exploration, Computer-Aided Design 45(3): 591–604.
[16] Kang, S., Alsulami, H., Rafiq, A. and Shahid, A. (2015a). S-iteration scheme and polynomiography, Journal of Nonlinear Science and Applications 8(5): 617–627.
[17] Kang, S., Rafiq, A., Latif, A., Shahid, A. and Kwun, Y. (2015b). Tricorns and multicorns of S-iteration scheme, Journal of Function Spaces 2015, Article ID: 417167.
[18] Klempien-Hinrichs, R. and von Totth, C. (2010). Generation of Celtic key patterns with tree-based collage grammars, Electronic Communications of the EASST 26: 205–221.
[19] Lalitha, D. and Rangarajan, K. (2012). Petri nets generating Kolam patterns, Indian Journal of Computer Science and Engineering 3(1): 68–74.
[20] Lu, J., Ye, Z. and Zou, Y. (2007). Automatic generation of colorful patterns with wallpaper symmetries from dynamics, The Visual Computer 23(6): 445–449.
[21] Lu, J., Zou, Y. and Li, W. (2010). Colorful patterns with discrete planar symmetries from dynamical systems, Fractals 18(1): 35–43.
[22] Lu, J., Zou, Y., Liu, Z. and Li, W. (2012). Colorful symmetric images in three-dimensional space from dynamical systems, Fractals 20(1): 53–60.
[23] Lu, J., Zou, Y., Yang, C. and Wang, L. (2014). Orbit trap rendering methods for generating colorful symmetric images in three-dimensional space, Nonlinear Dynamics 77(4): 1643–1651.
[24] Mann, W. (1953). Mean value methods in iteration, Proceedings of the American Mathematical Society 4(3): 506–510.
[25] Noor, M. (2000). New approximation schemes for general variational inequalities, Journal of Mathematical Analysis and Applications 251(1): 217–229.
[26] Ouyang, P., Zhao,W. and Huang, X. (2015). Beautiful math. Part 5: Colorful Archimedean tilings from dynamical systems, IEEE Computer Graphics and Applications 35(6): 90–96.
[27] Pickover, C. (2001). Computers, Pattern, Chaos, and Beauty: Graphics from an Unseen World, Dover Publications, Mineola, NY.
[28] Qi, W. and Li, X. (2009). Example-based floral pattern generation, Proceedings of the 5th International Conference on Image and Graphics, Xi’an, Shanxi, China, pp. 553–558.
[29] Sayed, Z., Ugail, H., Palmer, I., Purdy, J. and Reeve, C. (2016). Auto-parameterized shape grammar for constructing Islamic geometric motif-based structures, in M. Gavrilova et al. (Eds.), Transactions on Computational Science XXVIII: Special Issue on Cyberworlds and Cybersecurity, Springer, Berlin/Heidelberg, pp. 146–162.
[30] Setti, R. (2015). Generative dreams from deep belief networks, in C. Soddu and E. Colabella (Eds.), Generative Art 2015: Proceeding of the XVIII Generative Art Conference, Domus Argenia Publisher, Milan, pp. 260–273.
[31] von Gagern, M. and Richter-Gebert, J. (2009). Hyperbolization of Euclidean ornaments, Electronic Journal of Combinatorics 16(2): R12.
[32] Wei, L.-Y., Lefebvre, S., Kwatra, V. and Turk, G. (2009). State of the art in example-based texture synthesis, State of the Art Report: EG-STAR, Eurographics Association, Munich.
[33] Yeh, Y.-T., Breeden, K., Yang, L., Fisher, M. and Hanrahan, P. (2013). Synthesis of tiled patterns using factor graphs, ACM Transactions on Graphics 32(1), Article no. 3.