Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_4_a10, author = {Sokol, M. and Komorn{\'\i}kov\'a, M. and Bacig\'al, T. and Rodr{\'\i}guez, M. X.}, title = {The approximation function of bridge deck vibration derived from the measured eigenmodes}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {799--814}, publisher = {mathdoc}, volume = {27}, number = {4}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_4_a10/} }
TY - JOUR AU - Sokol, M. AU - Komorníková, M. AU - Bacigál, T. AU - Rodríguez, M. X. TI - The approximation function of bridge deck vibration derived from the measured eigenmodes JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 799 EP - 814 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_4_a10/ LA - en ID - IJAMCS_2017_27_4_a10 ER -
%0 Journal Article %A Sokol, M. %A Komorníková, M. %A Bacigál, T. %A Rodríguez, M. X. %T The approximation function of bridge deck vibration derived from the measured eigenmodes %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 799-814 %V 27 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_4_a10/ %G en %F IJAMCS_2017_27_4_a10
Sokol, M.; Komorníková, M.; Bacigál, T.; Rodríguez, M. X. The approximation function of bridge deck vibration derived from the measured eigenmodes. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 4, pp. 799-814. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_4_a10/
[1] Baili, J., Lahouar, S., Hergli, M., Amimi, A. and Besbes, K. (2009). GPR signal de-noising by discrete wavelet transform, Nondestructive Testing and Evaluation International 42: 696–703.
[2] Clough, R. and Penzien, J. (1993). Dynamics of Structures, McGraw-Hill, Singapore.
[3] De Roeck, G., Peeters, B. and Maeck, J. (2000). Dynamic monitoring of civil engineering structures, Computational Methods for Shells and Spatial Structures, IASS-IACM, Athens, Greece, pp. 1–24.
[4] Farrar, C., Doebling, S. and Nix, D. (2001). Vibration-based structural damage identification, Philosophical Transactions of the Royal Society A359: 131–149.
[5] Flesch, R., Stebernjak, B. and Freytag, B. (1999). System identification of bridge Warth/Austria, Structural Dynamics-EURODYN 99, Balkema, Rotterdam, pp. 813–818.
[6] Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning, Springer, New York, NY.
[7] James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013). An Introduction to Statistical Learning, 6th Edn., Springer, New York, NY.
[8] Janiszowski, K.B. (2014). Approximation of a linear dynamic process model using the frequency approach and a non-quadratic measure of the model error, International Journal of Applied Mathematics and Computer Science 24(1): 99–109, DOI: 10.2478/amcs-2014-0008.
[9] Joannin, C., Chouvion, B., Thouverez, F.and Mbaye, M.O.J. (2015). Nonlinear modal analysis of mistuned periodic structures subjected to dry friction, ASME Journal of Engineering for Gas Turbines and Power 138(7): 072504–072504–12.
[10] Leite, F., Montagne, R., Corso, G., Vasconcelos, G. and Lucena, L. (2008). Optimal wavelet filter for suppression of coherent noise with an application to seismic data, Physica A 387: 1439–1445.
[11] Li, P., Liu, C., Tian, Q., Hu, H. and Song, Y. (2016). Dynamics of a deployable mesh reflector of satellite antenna: Form-finding and modal analysis, ASME Journal of Computational and Nonlinear Dynamics 11(4): 041017–041017–12.
[12] Liu, X. (2013). A new method for calculating derivatives of eigenvalues and eigenvectors or discrete structural systems, Journal of Sound and Vibration 332(7): 1859–1867.
[13] Maeck, J. and De Roeck, G. (1999a). Detection of damage in civil engineering structures by direct stiffness derivation, 4th European Conference of Structural Dynamics, EURODYN 99, Prague, Czech Republic, pp. 485–490.
[14] Maeck, J. and De Roeck, G. (1999b). Dynamic bending and torsion stiffness derivation from modal curvatures and torsion rates, Journal of Sound and Vibration 225(1): 153–170.
[15] Martinček, G. (1981). Soil investigation according to mechanical impedance method, Die Strasse 21(11): 374–379, (in German).
[16] Martinček, G. (1994). Dynamics of Pavement Structures, E FN Spon., London.
[17] Microsoft (2013). Microsoft Excel 2013, Redmond, WA.
[18] Murthy, D. and Haftka, R.T. (1988). Derivatives of eigenvalues and eigenvectors of general complex matrix, International Journal for Numerical Methods in Engineering 26: 293–311.
[19] Roshan, P., Kumar, A., Tewatia, D. and Pal, S. (2015). Review paper on structural health monitoring: Its benefit and scope in India, Journal of Civil Engineering and Environmental Technology 2(2): 109–112.
[20] Scargle, J.D. (1982). Studies in astronomical time series analysis. II: Statistical aspects of spectral analysis of unevenly spaced data, The Astrophysical Journal 263: 835–853.
[21] Silva, T., Loja, L., Maia, N. and Barbosa, J. (2015). A hybrid procedure to identify the optimal stiffness coefficients of elastically restrained beams, International Journal of Applied Mathematics and Computer Science 25(2): 245–257, DOI: 10.1515/amcs-2015-0019.
[22] Sokol, M., Aroch, R., Venglar, M., Fabry, M. and Zivner, T. (2015). Experience with structural damage identification of an experimental bridge model, Applied Mechanics and Materials 769: 192–199.
[23] Sokol, M. and Flesch, R. (2005). Assessment of soil stiffness properties by dynamic tests on bridges, ASCE Journal of Bridge Engineering 10(1): 77–86.
[24] Stoica, P., Li, J. and He, H. (2009). Spectral analysis of nonuniformly sampled data: A new approach versus the periodogram, IEEE Transactions on Signal Processing 57(3): 843–858.
[25] Sutter, T., Gamarda, C.J., Walsh, J.L. and Adelman, H.M. (1988). Comparison of several methods for calculating vibration mode shape derivatives, AIAA Journal 26(12): 1506–1511.
[26] Vio, R., Diaz-Trigo, M. and Andreani, P. (2013). Irregular time series in astronomy and the use of the Lomb–Scargle periodogram, Astronomy and Computing 1: 5–16.
[27] Wenzel, H. (2009). Health Monitoring of Bridges, Wiley Sons, Chichester.
[28] Wolfram Research, Inc. (2015). Mathematica 10.2, Champaign, IL.
[29] Yang, S. and Sultan, C. (2016). Free vibration and modal analysis of a tensegrity-membrane system, 12th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Charlotte, NC, USA, Paper no. DETC2016-59292, pp. V006T09A023.
[30] Yi, T., Li, H. and Zhao, X. (2012). Noise smoothing for structural vibration test signals using an improved wavelet thresholding technique, Sensors 12: 11205–11220.
[31] Yu, M., Liu, Z. and Wang, D. (1997). Comparison of several approximate modal methods for computing mode shape derivatives, Computers Structures 62(2): 381–393.
[32] ZhangPing, L. and JinWu, X. (2007). Novel modal method for efficient calculation of complex eigenvector derivatives, AIAA Journal 45(6): 1406–1414.