Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_3_a9, author = {Vidhya, R. and Irene Hepzibah, R.}, title = {A comparative study on interval arithmetic operations with intuitionistic fuzzy numbers for solving an intuitionistic fuzzy multi-objective linear programming problem}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {563--573}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a9/} }
TY - JOUR AU - Vidhya, R. AU - Irene Hepzibah, R. TI - A comparative study on interval arithmetic operations with intuitionistic fuzzy numbers for solving an intuitionistic fuzzy multi-objective linear programming problem JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 563 EP - 573 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a9/ LA - en ID - IJAMCS_2017_27_3_a9 ER -
%0 Journal Article %A Vidhya, R. %A Irene Hepzibah, R. %T A comparative study on interval arithmetic operations with intuitionistic fuzzy numbers for solving an intuitionistic fuzzy multi-objective linear programming problem %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 563-573 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a9/ %G en %F IJAMCS_2017_27_3_a9
Vidhya, R.; Irene Hepzibah, R. A comparative study on interval arithmetic operations with intuitionistic fuzzy numbers for solving an intuitionistic fuzzy multi-objective linear programming problem. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 3, pp. 563-573. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a9/
[1] Atanassov, K.T. (1986). Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1): 87–96.
[2] Atanassov, K.T. and Gargov, G. (1989). Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 31(3): 343–349.
[3] Ben Aicha, F., Bouani, F. and Ksouri, M. (2013). A multivariable multiobjective predictive controller, International Journal of Applied Mathematics and Computer Science 23(1): 35–45, DOI: 10.2478/amcs-2013-0004.
[4] Chanas, S. and Kuchta, D. (1996). Multi objective programming in optimization of interval objective functions—A generalized approach, European Journal of Operational Research 94(3): 594–598.
[5] Chinneck, J.W. and Ramadan, K. (2000). Linear programming with interval coefficients, Journal of the Operational Research Society 51(2): 209–220.
[6] Deng-Feng, L. (2010). A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems, Computers and Mathematics with Applications 1(6): 1557–1570.
[7] Dębski, R. (2016). An adaptive multi-spline refinement algorithm in simulation based sailboat trajectory optimization using onboard multi-core computer systems, International Journal of Applied Mathematics and Computer Science 26(2): 351–365, DOI: 10.1515/amcs-2016-0025.
[8] Dwyer, P.S. (1951). Linear Computation, Wiley, New York, NY.
[9] Ganesan, K. and Veeramani, P. (2005). On arithmetic operations of interval numbers, International Journal of Uncertainty Fuzziness and Knowledge-based Systems 13(6): 619–631.
[10] Ida, M. (1999). Necessary efficient test in interval multi objective linear programming, Proceedings of the 8th International Fuzzy Systems Association World Congress, Taipei, Taiwan, pp. 500–504.
[11] Inuiguchi, M. and Sakawa, M. (1995). Minimax regret solution to linear programming problems with an interval objective function, European Journal of Operational Research 86(3): 526–536.
[12] Irene Hepzibah, R. and Vidhya, R. (2015). Modified new operations for interval valued intuitionistic fuzzy numbers (IVIFNs): Linear programming problem with triangular intuitionistic fuzzy numbers, Proceedings of the National Conference on Frontiers in Applied Sciences and Computer Technology, NIT, Trichy, Tamil Nadu, India, pp. 35–43.
[13] Ishibuchi, H. and Tanaka, H. (1990). Multi objective programming in optimization of the interval objective function, European Journal of Operational Research 48(2): 219–225.
[14] Moore, R.E. (1966). Interval Analysis, Prentice Hall, Englewood Cliffs, NJ.
[15] Oliveira, C. and Antunes, C.H. (2007). Multiple objective linear programming models with interval coefficients—An illustrated overview, European Journal of Operational Research 181(3): 1434–1463.
[16] Rardin, R.L. (2003). Optimization in Operations Research, Pearson Education, Singapore.
[17] Sengupta, A., Pal, T.K. and Chakraborty, D. (2001). Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming, Fuzzy Sets and Systems 119(1): 129–138.
[18] Smoczek, J. (2013). Evolutionary optimization of interval mathematics-based design of a TSK fuzzy controller for anti-sway crane control, International Journal of Applied Mathematics and Computer Science 23(4): 749–759, DOI: 10.2478/amcs-2013-0056.
[19] Timothy, J.R. (2010). Fuzzy Logic with Engineering Applications, 3rd Edn., Wiley, New York, NY.
[20] Wang, M.L. and Wang, H.F. (2001). Interval analysis of a fuzzy multi objective linear programming, International Journal of Fuzzy Systems 3(4): 558–568.
[21] Yun, Y.S. and Lee, B. (2013). The one-sided quadrangular fuzzy sets, Journal of the Chungcheong Mathematical Society 26(2): 297–308.