Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_3_a8, author = {E, C. G. and Li, Q. L. and Li, S.}, title = {The interval {Shapley} value of an {M/M/1} service system}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {549--562}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a8/} }
TY - JOUR AU - E, C. G. AU - Li, Q. L. AU - Li, S. TI - The interval Shapley value of an M/M/1 service system JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 549 EP - 562 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a8/ LA - en ID - IJAMCS_2017_27_3_a8 ER -
%0 Journal Article %A E, C. G. %A Li, Q. L. %A Li, S. %T The interval Shapley value of an M/M/1 service system %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 549-562 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a8/ %G en %F IJAMCS_2017_27_3_a8
E, C. G.; Li, Q. L.; Li, S. The interval Shapley value of an M/M/1 service system. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 3, pp. 549-562. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a8/
[1] Aksin, O., De Vericourt, F. and Karaesmen, F. (2008). Call center outsourcing contract design and choice, Management Science 54(2): 354–368.
[2] Alparslan-Gok, S., Branzei, O., Branzei, R. and Tijs, S. (2011). Set-valued solution concepts using interval-type payoffs for interval games, Journal of Mathematical Economics 47(4): 621–626.
[3] Alparslan-Gok, S., Miquel, S. and Tijs, S. (2009). Cooperation under interval uncertainty, Mathematical Methods of Operations Research 69(1): 99–109.
[4] Alparslan-Gok, S., Palancı, O. and Olgun, M. (2014). Cooperative interval games: Mountain situations with interval data, Journal of Computational and Applied Mathematics 259(6): 622–632.
[5] Anily, S. and Haviv, M. (2007). Cost-allocation problem for the first order interaction joint replenishment model, Operations Research 55(2): 292–302.
[6] Anily, S. and Haviv, M. (2010). Cooperation in service systems, Operations Research 58(3): 660–673.
[7] Benjaafar, S. (1995). Performance bounds for the effectiveness of pooling in multi-processing systems, European Journal of Operational Research 87(2): 375–388.
[8] Branzei, R., Branzei, O., Alparslan Gok, S. and Tijs, S. (2010). Cooperative interval games: A survey, Central European Journal of Operations Research 18(3): 397–411.
[9] Buzacott, J. (1996). Commonalities in reengineered business processes: Models and issues, Management Science 42(5): 768–782.
[10] Chun, Y. (1989). A new axiomatization of the Shapley value, Games and Economic Behavior 1(2): 119–130.
[11] Garcia-Sanz, M., Fernandez, F., Fiestras-Janeiro, M., Garcia-Jurado, I. and Puerto, J. (2008). Cooperation in Markovian queueing models, European Journal of Operational Research 188(2): 485–495.
[12] Gonzalez, P. and Herrero, C. (2004). Optimal sharing of surgical costs in the presence of queues, Mathematical Methods of Operations Research 59(3): 435–446.
[13] Han, W., Sun, H. and Xu, G. (2012). A new approach of cooperative interval games: The interval core and Shapley value revisited, Operations Research Letters 40(6): 462–468.
[14] Hart, S. and Mas-Colell, A. (1989). Potential, value and consistency, Econometrica 57(3): 589–614.
[15] Hopp, W., Tekin, E. and Van Oyen, M. (2004). Benefits of skill chaining in serial production lines with cross-trained workers, Management Science 50(1): 83–98.
[16] Hwang, Y. and Yang, W. (2014). A note on potential approach under interval games, Top 22(2): 571–577.
[17] Karsten, F., Slikker, M. and Houtum, G. (2011). Analysis of resource pooling games via a new extension of the Erlang loss function, BETA working paper 344, Eindhoven University of Technology, Eindhoven.
[18] Li, S., Sun, W., E, C.-G. and Shi, L. (2016). A scheme of resource allocation and stability for peer-to-peer file-sharing networks, International Journal of Applied Mathematics and Computer Science 26(3): 707–719, DOI: 10.1515/amcs-2016-0049.
[19] Mallozzi, L., Scalzo, V. and Tijs, S. (2011). Fuzzy interval cooperative games, Fuzzy Sets and Systems 165(1): 98–105.
[20] Mandelbaum, A. and Reiman, M. (1998). On pooling in queueing networks, Management Science 44(7): 971–981.
[21] Maniquet, F. (2003). A characterization of the Shapley value in queueing problems, Journal of Economic Theory 109(1): 90–103.
[22] Mariano, P. and Correia, L. (2015). The Give and Take game: Analysis of a resource sharing game, International Journal of Applied Mathematics and Computer Science 25(4): 753–767, DOI: 10.1515/amcs-2015-0054.
[23] Moulin, H. and Strong, R. (2002). Fair queuing and other probabilistic allocation methods, Mathematics of Operations Research 27(1): 1–30.
[24] Nagarajan, M. and Sosic, G. (2008). Game-theoretic analysis of cooperation among supply chain agents: Review and extensions, European Journal of Operational Research 187(3): 719–745.
[25] Roth, A. (1977). The Shapley value as a von Neumann–Morgenstern utility, Econometrica 45(3): 657–664.
[26] Shapley, L. (1953). A value for n-person games, Annals ofMathematics Studies 28: 307–317.
[27] Stidham, S. (1970). On the optimality of single-server queuing systems, Operations Research 18(4): 708–732.
[28] Young, H. (1985). Monotonic solutions of cooperative games, International Journal of Game Theory 14(2): 65–72.