Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_3_a6, author = {Qin, F. and Wang, Z. and Ma, Z. and Li, Z.}, title = {Accurate gradient computations at interfaces using finite element methods}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {527--537}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a6/} }
TY - JOUR AU - Qin, F. AU - Wang, Z. AU - Ma, Z. AU - Li, Z. TI - Accurate gradient computations at interfaces using finite element methods JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 527 EP - 537 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a6/ LA - en ID - IJAMCS_2017_27_3_a6 ER -
%0 Journal Article %A Qin, F. %A Wang, Z. %A Ma, Z. %A Li, Z. %T Accurate gradient computations at interfaces using finite element methods %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 527-537 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a6/ %G en %F IJAMCS_2017_27_3_a6
Qin, F.; Wang, Z.; Ma, Z.; Li, Z. Accurate gradient computations at interfaces using finite element methods. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 3, pp. 527-537. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a6/
[1] Adams, R. and Fournier, J. (2003). Sobolev Spaces. Second Edition, Academic Press, Cambridge, MA.
[2] An, N. and Chen, H. (2014). A partially penalty immersed interface finite element method for anisotropic elliptic interface problems, Numerical Methods for Partial Differential Equations 30(6): 1984–2028.
[3] Anitescu, C. (2017). Open source 3D Matlab isogeometric analysis code, https://sourceforge.net/u/cmechanicsos/profile/.
[4] Babuška, I. (1970). The finite element method for elliptic equations with discontinuous coefficients, Computing 5(3): 207–213.
[5] Bramble, J. and King, J. (1996). A finite element method for interface problems in domains with smooth boundaries and interfaces, Advances in Computational Mathematics 6(1): 109–138.
[6] Brenner, S. and Scott, R. (2007). The Mathematical Theory of Finite Element Methods, Springer, New York, NY.
[7] Cao, W., Zhang, X. and Zhang, Z. (2017). Superconvergence of immersed finite element methods for interface problems, Advances in Computational Mathematics 43(4): 795–821.
[8] Carstensen, C., Gallistl, D., Hellwing, F. andWeggler, L. (2014). Low-order DPG-FEM for an elliptic PDE, Computers Mathematics with Applications 68(11): 1503–1512.
[9] Chen, Z. and Zou, J. (1998). Finite element methods and their convergence for elliptic and parabolic interface problems, Numerische Mathematik 79(2): 175–202.
[10] Chou, S. (2012). An immersed linear finite element method with interface flux capturing recovery, Discrete and Continuous Dynamical Systems B 17(7): 2343–2357.
[11] Chou, S.H., Kwak, D.Y. and Wee, K. (2010). Optimal convergence analysis of an immersed interface finite element method, Advances in Computational Mathematics 33(2): 149–168.
[12] Douglas Jr, J., Dupont, T. and Wheeler, M. (1974). A Galerkin procedure for approximating the flux on the boundary for elliptic and parabolic boundary value problems, Revue française d’automatique, informatique, recherche op´erationnelle. Analyse numérique 8(2): 47–59.
[13] Guo, H. and Yang, X. (2017). Gradient recovery for elliptic interface problem. II: Immersed finite element methods, Journal of Computational Physics 338: 606–619.
[14] He, X., Lin, T. and Lin, Y. (2011). Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions, International Journal of Numerical Analysis and Modeling 8(2): 284–301.
[15] Ji, H., Chen, J. and Li, Z. (2016). A new augmented immersed finite element method without using SVD interpolations, Numerical Algorithms 71(2): 395–416.
[16] Karczewska, A., Rozmej P., Szczeciński, M. and Boguniewicz, B. (2016). A finite element method for extended KdV equations, International Journal of Applied Mathematics and Computer Science 26(3): 555–567, DOI: 10.1515/amcs-2016-0039.
[17] Kevorkian, J. (1990). Partial Differential Equations: Analytical Solution, Springer, New York, NY.
[18] Kwak, D.Y., Wee, K. and Chang, K. (2010). An analysis of a broken p1 nonconforming finite element method for interface problems, SIAM Journal on Numerical Analysis 48(6): 2117–2134.
[19] Li, Z. (1998). The immersed interface method using a finite element formulation, Applied Numerical Mathematics 27(3): 253–267.
[20] Li, Z. and Ito, K. (2006). The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains, SIAM, Philadelphia, PA.
[21] Li, Z., Lin, T. and Wu, X. (2003). New Cartesian grid methods for interface problems using the finite element formulation, Numerische Mathematik 96(1): 61–98.
[22] Lin, T., Lin, Y. and Zhang, X. (2015). Partially penalized immersed finite element methods for elliptic interface problems, SIAM Journal on Numerical Analysis 53(2): 1121–1144.
[23] Lin, T. and Zhang, X. (2012). Linear and bilinear immersed finite elements for planar elasticity interface problems, Journal of Computational and Applied Mathematics 236(18): 4681–4699.
[24] Sutton, A. and Balluffi, R. (1995). Interfaces in Crystalline Materials, Clarendon Press, Oxford.
[25] Tartar, L. (2007). An Introduction to Sobolev Spaces and Interpolation Spaces, Springer, New York, NY.
[26] Wahlbin, L. (1995). Superconvergence in Galerkin Finite Element Methods, Springer, New York, NY.
[27] Wheeler, M. (1974). A Galerkin procedure for estimating the flux for two-point boundary value problems, SIAM Journal on Numerical Analysis 11(4): 764–768.
[28] Xu, J. (1982). Error estimates of the finite element method for the 2nd order elliptic equations with discontinuous coefficients, Journal of Xiangtan University 1(1): 1–5.
[29] Yang, X., Li, B. and Li, Z. (2002). The immersed interface method for elasticity problems with interfaces, Dynamics of Continuous, Discrete and Impulsive Systems 10(5): 783–808.
[30] Zhang, Z. and Naga, A. (2005). A new finite element gradient recovery method: Superconvergence property, SIAM Journal on Scientific Computing 26(4): 1192–1213.
[31] Zienkiewicz, O. and Taylor, R. (2000). The Finite Element Method: Solid Mechanics, Butterworth-Heinemann, Oxford.