Conservative finite volume element schemes for the complex modified Korteweg–de Vries equation
International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 3, pp. 515-525.

Voir la notice de l'article provenant de la source Library of Science

The aim of this paper is to build and validate a class of energy-preserving schemes for simulating a complex modified Korteweg–de Vries equation. The method is based on a combination of a discrete variational derivative method in time and finite volume element approximation in space. The resulting scheme is accurate, robust and energy-preserving. In addition, for comparison, we also develop a momentum-preserving finite volume element scheme and an implicit midpoint finite volume element scheme. Finally, a complete numerical study is developed to investigate the accuracy, conservation properties and long time behaviors of the energy-preserving scheme, in comparison with the momentum-preserving scheme and the implicit midpoint scheme, for the complex modified Korteweg–de Vries equation.
Keywords: mass, energy, momentum, finite volume method, Korteweg–de Vries equation
Mots-clés : pęd, metoda objętości skończonych, równanie Kortewega-de Vries
@article{IJAMCS_2017_27_3_a5,
     author = {Yan, J. L. and Zheng, L. H.},
     title = {Conservative finite volume element schemes for the complex modified {Korteweg{\textendash}de} {Vries} equation},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {515--525},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a5/}
}
TY  - JOUR
AU  - Yan, J. L.
AU  - Zheng, L. H.
TI  - Conservative finite volume element schemes for the complex modified Korteweg–de Vries equation
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2017
SP  - 515
EP  - 525
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a5/
LA  - en
ID  - IJAMCS_2017_27_3_a5
ER  - 
%0 Journal Article
%A Yan, J. L.
%A Zheng, L. H.
%T Conservative finite volume element schemes for the complex modified Korteweg–de Vries equation
%J International Journal of Applied Mathematics and Computer Science
%D 2017
%P 515-525
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a5/
%G en
%F IJAMCS_2017_27_3_a5
Yan, J. L.; Zheng, L. H. Conservative finite volume element schemes for the complex modified Korteweg–de Vries equation. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 3, pp. 515-525. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a5/

[1] Bank, R.E. and Rose, D.J. (1987). Some error estimates for the box methods, SIAM Journal on Numerical Analysis 24(4): 777–787.

[2] Cai, J.X. and Miao, J. (2012). New explicit multisymplectic scheme for the complex modified Korteweg–de Vries equation, Chinese Physics Letters 29(3): 030201.

[3] Cai, Z.Q. (1991). On the finite volume element method, Numerische Mathematik 58(7): 713–735.

[4] Costa, R., Machado, G.J. and Clain, S. (2015). A sixth-order finite volume method for the 1D biharmonic operator: Application to intramedullary nail simulation, International Journal of Applied Mathematics and Computer Science 25(3): 529–537, DOI: 10.1515/amcs-2015-0039.

[5] Erbay, H.A. (1998). Nonlinear transverse waves in a generalized elastic solid and the complex modified Korteweg–de Vries equation, Physica Scripta 58(1): 9–14.

[6] Erbay, S. and Suhubi, E.S. (1989). Nonlinear wave propagation in micropolar media. II: Special cases, solitary waves and Painlev´e analysis, International Journal of Engineering Science 27(8): 915–919.

[7] Ewing, R., Lin, T. and Lin, Y. (2000). On the accuracy of the finite volume element method based on piecewise linear polynomials, SIAM Journal on Numerical Analysis 39(6): 1865–1888.

[8] Furihata, D. and Matsuo, T. (2010). Discrete Variational Derivative Method: A Structure-Preserving Numerical Method For Partial Differential Equations, CRC Press, London.

[9] Furihata, D. and Mori, M. (1996). A stable finite difference scheme for the Cahn–Hilliard equation based on the Lyapunov functional, Zeitschrift fur Angewandte Mathematik und Mechanik 76(1): 405–406.

[10] Gorbacheva, O.B. and Ostrovsky, L.A. (1983). Nonlinear vector waves in a mechanical model of a molecular chain, Physica D 8(1–2): 223–228.

[11] Hackbusch, W. (1989). On first and second order box schemes, Computing 41(4): 277–296.

[12] Ismail, M.S. (2008). Numerical solution of complex modified Korteweg–de Vries equation by Petrov–Galerkin method, Applied Mathematics and Computation 202(2): 520–531.

[13] Ismail, M.S. (2009). Numerical solution of complex modified Korteweg–de Vries equation by collocation method, Communications in Nonlinear Science and Numerical Simulation 14(3): 749–759.

[14] Karney, C.F.F., Sen, A. and Chu, F.Y.F. (1979). Nonlinear evolution of lower hybrid waves, Physics of Fluids 22(5): 940–952.

[15] Koide, S. and Furihata, D. (2009). Nonlinear and linear conservative finite difference schemes for regularized long wave equation, Japan Journal of Industrial and Applied Mathematics 26(1): 15–40.

[16] Korkmaz, A. and Dağ, I. (2009). Solitary wave simulations of complex modified Korteweg–de Vries equation using differential quadrature method, Computer Physics Communications 180(9): 1516–1523.

[17] Li, R.H., Chen, Z.Y. and Wu,W. (2000). Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods, Marcel Dekker Inc., New York, NY.

[18] Matsuo, T. and Furihata, D. (2001). Dissipative or conservative finite difference schemes for complex-valued nonlinear partial differential equations, Journal of Computational Physics 171(2): 425–447.

[19] Matsuo, T. and Kuramae, H. (2012). An alternating discrete variational derivative method, AIP Conference Proceedings 1479: 1260–1263.

[20] Miyatake, Y. and Matsuo, T. (2014). A general framework for finding energy dissipative/conservative H1-Galerkin schemes and their underlying H1-weak forms for nonlinear evolution equations, BIT Numerical Mathematics 54(4): 1119–1154.

[21] Muslu, G.M. and Erabay, H.A. (2003). A split-step Fourier method for the complex modified Korteweg–de Vries equation, Computers Mathematics with Applications 45(1): 503–514.

[22] Uddin, M., Haq, S. and Islam, S.U. (2009). Numerical solution of complex modified Korteweg–de Vries equation by mesh-free collocation method, Computers Mathematics with Applications 58(3): 566–578.

[23] Wang, Q.X., Zhang, Z.Y., Zhang, X.H. and Zhu, Q.Y. (2014). Energy-preserving finite volume element method for the improved Boussinesq equation, Journal of Computational Physics 270: 58–69.

[24] Yaguchi, T., Matsuo, T. and Sugihara, M. (2010). An extension of the discrete variational method to nonuniform grids, Journal of Computational Physics 229(11): 4382–4423.

[25] Yan, J.L., Zhang, Q., Zhu, L. and Zhang, Z.Y. (2016). Two-grid methods for finite volume element approximations of nonlinear Sobolev equations, Numerical Functional Analysis and Optimization 37(3): 391–414.

[26] Zhang, Z.Y. and Lu, F.Q. (2012). Quadratic finite volume element method for the improved Boussinesq equation, Journal of Mathematical Physics 53(1): 013505.