Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_3_a2, author = {Pimenov, V. G. and Hendy, A. S.}, title = {A numerical solution for a class of time fractional diffusion equations with delay}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {477--488}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a2/} }
TY - JOUR AU - Pimenov, V. G. AU - Hendy, A. S. TI - A numerical solution for a class of time fractional diffusion equations with delay JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 477 EP - 488 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a2/ LA - en ID - IJAMCS_2017_27_3_a2 ER -
%0 Journal Article %A Pimenov, V. G. %A Hendy, A. S. %T A numerical solution for a class of time fractional diffusion equations with delay %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 477-488 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a2/ %G en %F IJAMCS_2017_27_3_a2
Pimenov, V. G.; Hendy, A. S. A numerical solution for a class of time fractional diffusion equations with delay. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 3, pp. 477-488. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a2/
[1] Alikhanov, A.A. (2015). A new difference scheme for the time fractional diffusion equation, Journal of Computational Physics 280: 424–438.
[2] Bagley, R.L. and Torvik, P.J. (1983). A theoretical basis for the application of fractional calculus to viscoelasticity, Journal of Rheology 27(201): 201–210.
[3] Balachandran, K. and Kokila, J. (2012). On the controllability of fractional dynamical systems, International Journal of Applied Mathematics and Computer Science 22(3): 523–531, DOI: 10.2478/v10006-012-0039-0.
[4] Batzel, J.J. and Kappel, F. (2011). Time delay in physiological systems: Analyzing and modeling its impact, Mathematical Biosciences 234(2): 61–74.
[5] Bellen, A. and Zennaro, M. (2003). Numerical Methods for Delay Differential Equations, Oxford University Press, Oxford.
[6] Benson, D., Schumer, R., Meerschaert, M.M. and Wheatcraft, S.W. (2001). Fractional dispersion, Levy motion, and the made tracer tests, Transport in Porous Media 42(1–2): 211–240.
[7] Chen, F. and Zhou, Y. (2011). Attractivity of fractional functional differential equations, Computers and Mathematics with Applications 62(3): 1359–1369.
[8] Culshaw, R. V., Ruan, S. and Webb, G. (2003). A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, Mathematical Biology 46: 425–444.
[9] Ferreira, J.A. (2008). Energy estimates for delay diffusion-reaction equations, Computational and Applied Mathematics 26(4): 536–553.
[10] Hao, Z., Fan, K., Cao,W. and Sun, Z. (2016). A finite difference scheme for semilinear space-fractional diffusion equations with time delay, Applied Mathematics and Computation 275: 238–254.
[11] Hatano, Y. and Hatano, N. (1998). Dispersive transport of ions in column experiments: An explanation of long-tailed profiles, Water Resources Research 34(5): 1027–1033.
[12] Höfling, F. and Franosch, T. (2013). Anomalous transport in the crowded world of biological cells, Reports on Progress in Physics 76(4): 46602.
[13] Holte, J.M. (2009). Discrete Gronwall lemma and applications, MAA North Central Section Meeting at UND, Grand Forks, ND, USA, p. 8, http://homepages.gac.edu/˜holte/publications/GronwallLemma.pdf.
[14] Jackiewicz, Z., Liu, H., Li, B. and Kuang, Y. (2014). Numerical simulations of traveling wave solutions in a drift paradox inspired diffusive delay population model, Mathematics and Computers in Simulation 96: 95–103.
[15] Karatay, I., Kale, N. and Bayramoglu, S.R. (2013). A new difference scheme for time fractional heat equations based on Crank–Nicholson method, Fractional Calculus and Applied Analysis 16(4): 893–910.
[16] Kruse, R. and Scheutzow, M. (2016). A discrete stochastic Gronwall lemma, Mathematics and Computers in Simulation, DOI: 10.1016/j.matcom.2016.07.002.
[17] Lakshmikantham, V. (2008). Theory of fractional functional differential equations, Nonlinear Analysis: Theory, Methods and Applications 69(10): 3337–3343.
[18] Lekomtsev, A. and Pimenov, V. (2015). Convergence of the scheme with weights for the numerical solution of a heat conduction equation with delay for the case of variable coefficient of heat conductivity, Applied Mathematics and Computation 256: 83–93.
[19] Liu, P.-P. (2015). Periodic solutions in an epidemic model with diffusion and delay, Applied Mathematics and Computation 265: 275–291.
[20] Meerschaert, M.M. and Tadjeran, C. (2004). Finite difference approximations for fractional advection-dispersion flow equations, Computational and Applied Mathematics 172(1): 65–77.
[21] Miller, K.S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, Miller, New York, NY.
[22] Pimenov, V.G. and Hendy, A.S. (2015). Numerical studies for fractional functional differential equations with delay based on BDF-type shifted Chebyshev polynomials, Abstract and Applied Analysis, 2015(2015), Article ID 510875, DOI: 10.1155/2015/510875.
[23] Pimenov, V.G., Hendy, A.S. and De Staelen, R.H. (2017). On a class of non-linear delay distributed order fractional diffusion equations, Journal of Computational and Applied Mathematics 318: 433–443.
[24] Raberto, M., Scalas, E. and Mainardi, F. (2002). Waiting-times returns in high frequency financial data: An empirical study, Physica A 314(1–4): 749–755.
[25] Ren, J. and Sun, Z.Z. (2015). Maximum norm error analysis of difference schemes for fractional diffusion equations, Applied Mathematics and Computation 256: 299–314.
[26] Rihan, F.A. (2009). Computational methods for delay parabolic and time-fractional partial differential equations, Numerical Methods for Partial Differential Equations 26(6): 1557–1571.
[27] Samarskii, A.A. and Andreev, V.B. (1976). Finite Difference Methods for Elliptic Equations, Nauka, Moscow, (in Russian).
[28] Scalas, E., Gorenflo, R. and Mainardi, F. (2000). Fractional calculus and continuous-time finance, Physica A 284(1–4): 376–384.
[29] Schneider, W. and Wyss, W. (1989). Fractional diffusion and wave equations, Journal of Mathematical Physics 30(134): 134–144.
[30] Sikora, B. (2016). Controllability criteria for time-delay fractional systems with a retarded state, International Journal of Applied Mathematics and Computer Science 26(3): 521–531, DOI: 10.1515/amcs-2016-0036.
[31] Solodushkin, S.I., Yumanova, I.F. and De Staelen, R.H. (2017). A difference scheme for multidimensional transfer equations with time delay, Journal of Computational and Applied Mathematics 318: 580–590.
[32] Tumwiine, J., Luckhaus, S., Mugisha, J.Y.T. and Luboobi, L.S. (2008). An age-structured mathematical model for the within host dynamics of malaria and the immune system, Journal of Mathematical Modelling and Algorithms 7: 79–97.
[33] Wyss, W. (1986). The fractional diffusion equation, Journal of Mathematical Physics 27: 2782–2785.
[34] Yan, Y. and Kou, C. (2012). Stability analysis of a fractional differential model of HIV infection of CD4+ T-cells with time delay, Mathematics and Computers in Simulation 82(9): 1572–1585.
[35] Zhang, Z.B. and Sun, Z.Z. (2013). A linearized compact difference scheme for a class of nonlinear delay partial differential equations, Applied Mathematical Modelling 37(3): 742–752.