Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_3_a13, author = {Wijaya, K. P. and Sutimin, S. and Soewono, E. and G\"otz, T.}, title = {On the existence of a nontrivial equilibrium in relation to the basic reproductive number}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {623--636}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a13/} }
TY - JOUR AU - Wijaya, K. P. AU - Sutimin, S. AU - Soewono, E. AU - Götz, T. TI - On the existence of a nontrivial equilibrium in relation to the basic reproductive number JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 623 EP - 636 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a13/ LA - en ID - IJAMCS_2017_27_3_a13 ER -
%0 Journal Article %A Wijaya, K. P. %A Sutimin, S. %A Soewono, E. %A Götz, T. %T On the existence of a nontrivial equilibrium in relation to the basic reproductive number %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 623-636 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a13/ %G en %F IJAMCS_2017_27_3_a13
Wijaya, K. P.; Sutimin, S.; Soewono, E.; Götz, T. On the existence of a nontrivial equilibrium in relation to the basic reproductive number. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 3, pp. 623-636. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a13/
[1] Aguiar, M., Kooi, B.W., Rocha, F., Ghaffari, P. and Stollenwerk, N. (2013). How much complexity is needed to describe the fluctuations observed in dengue hemorrhagic fever incidence data?, Ecological Complexity 16: 31–40.
[2] Arino, J., Miller, J.M. and van den Driessche, P. (2005). A multi-species epidemic model with spatial dynamics, Mathematical Medicine and Biology: A Journal of the IMA 22(2): 3140.
[3] Cushing, J.M. (1998). An Introduction to Structured Population Dynamics, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, PA.
[4] Gelfand, I. (1941). Normierte Ringe, Mathematiceskii Sbornik 9(51)(1): 3–24.
[5] Golubitsky, M. and Schaeffer, D.G. (1985). Singularities and Groups in Bifurcation Theory, Vol. I, Springer, New York, NY.
[6] Horn, R.A. and Johnson, C.R. (2013). Matrix Analysis, 2nd Ed., Cambridge University Press, New York, NY.
[7] Krasnoselskii, M. and Zabreiko, P. (1984). Geometrical Methods of Nonlinear Analysis, Springer, New York, NY.
[8] Ma, T. and Wang, S. (2005). Bifurcation Theory and Applications, World Scientific Series on Nonlinear Science A, Vol. 53, World Scientific Publishing, Singapore.
[9] Nirenberg, L. (2001). Topics in Nonlinear Functional Analysis, Courant Lecture Notes in Mathematics 6, New York University Courant Institute of Mathematical Sciences, New York, NY.
[10] Ortega, J.M. (1932). Numerical Analysis: A Second Course, SIAM, Philadelphia, PA.
[11] Rabinowitz, P.H. (1971). Some global results for nonlinear eigenvalue problems, Journal of Functional Analysis 7(3): 487–513.
[12] Rabinowitz, P.H. (1977). A bifurcation theorem for potential operators, Journal of Functional Analysis 25(4): 412–424.
[13] van den Driessche, P. and Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences 180(1): 29–48.
[14] Wijaya, K.P., Goetz, T. and Soewono, E. (2014). An optimal control model of mosquito reduction management in a dengue endemic region, International Journal of Biomathematics 7(5): 1450056–22.
[15] Wijaya, K.P., Goetz, T. and Soewono, E. (2016). Advances in mosquito dynamics modeling, Mathematical Methods in the Applied Sciences 39(16): 4750–4763.
[16] Zadeh, L.A. and Desoer, C.A. (1963). Linear System Theory: The State Approach, McGraw-Hill, New York, NY.