Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_3_a10, author = {Piegat, A. and Landowski, M.}, title = {Is an interval the right result of arithmetic operations on intervals?}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {575--590}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a10/} }
TY - JOUR AU - Piegat, A. AU - Landowski, M. TI - Is an interval the right result of arithmetic operations on intervals? JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 575 EP - 590 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a10/ LA - en ID - IJAMCS_2017_27_3_a10 ER -
%0 Journal Article %A Piegat, A. %A Landowski, M. %T Is an interval the right result of arithmetic operations on intervals? %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 575-590 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a10/ %G en %F IJAMCS_2017_27_3_a10
Piegat, A.; Landowski, M. Is an interval the right result of arithmetic operations on intervals?. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 3, pp. 575-590. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a10/
[1] Bader, F. and Nipkow, T. (1998). Term Rewriting and All That, Cambridge University Press, Cambridge.
[2] Birkhoff, G. (1967). Lattice Theory, Vol. XXV, Colloquium Publications, American Mathematical Society, Providence, RI.
[3] Chalco-Cano, Y., Lodwick, W. and Bede, B. (2014). Single level constraint interval arithmetic, Fuzzy Sets and Systems 257: 146–168.
[4] Dabala, K. (2009). Research of possibilities of interval arithmetic application to induction motors efficiency determination, Zeszyty Problemowe: Maszyny Elektryczne (84): 39–44.
[5] Dymova, L. (2011). Soft Computing in Economics and Finance, Springer, Berlin/Heidelberg.
[6] Figuiredo, L. and Stolfi, J. (2004). Affine arithmetic: Concepts and applications, Numerical Algorithms 37(1): 147–158.
[7] Hanss, M. (2005). Applied Fuzzy Arithmetic, Springer, Berlin/Heidelberg.
[8] Hayes, B. (2003). A lucid interval, American Scientist 91(6): 484–488.
[9] Kaucher, E. (1980). Interval analysis in the extended interval space IR, Computing Supplement 2: 33–49.
[10] Kovalerchuk, B. and Kreinovich, V. (2016). Comparisons of applied tasks with intervals, fuzzy sets and probability approaches, Proceedings of the 2016 IEEE International Conference on Fuzzy Systems (FUZZ), Vancouver, Canada, pp. 1478–1483.
[11] Leontief, W. (1949). The Structure of the American Economy, 1919–1935, Oxford University Press, London.
[12] Leontief, W. (1966). Input-Output Economics, Oxford University Press, New York, NY.
[13] Lodwick, W. (1999). Constrained interval arithmetic, Technical Report CCM, University of Colorado at Denver, Denver, CO.
[14] Lodwick, W. and Dubois, D. (2015). Interval linear systems as a necessary step in fuzzy linear systems, Fuzzy Sets and Systems 281: 227–251.
[15] Lyashko, M. (2005). The optimal solution of an interval systems of linear algebraic equations, Reliable Computing 11(2): 227–251.
[16] Mazarhuiya, F., Mahanta, A. and Baruah, H. (2011). Solution of fuzzy equation a+x = b using method of superimposition, Applied Mathematics 2(8): 1039–1045.
[17] Moore, R. (1996). Interval Analysis, Prentice Hall, Englewood Cliffs, NJ.
[18] Moore, R., Baker, K. and Cloud, M. (2009). Introduction to Interval Analysis, SIAM, Philadelphia, PA.
[19] Moore, R. and Young, C. (1959). Interval analysis I, Technical Report LMSD285875, Lockheed Missiles and Space Division, Sunnyvale, CA.
[20] Neumaier, A. (1990). Interval Methods for Systems of Equations, Cambridge University Press, Cambridge.
[21] Pedrycz,W., Skowron, A. and Kreinovich, V. (2008). Handbook of Granular Computing, John Wiley, Chichester.
[22] Piegat, A. and Landowski, M. (2012). Is the conventional interval arithmetic correct?, Journal of Theoretical and Applied Computer Science 6(2): 27–44.
[23] Piegat, A. and Landowski, M. (2013). Two interpretations of multidimensional RDM interval arithmetic—multiplication and division, International Journal of Fuzzy Systems 15(4): 488–496.
[24] Piegat, A. and Pluciński, M. (2015). Computing with words with the use of inverse RDM models of membership functions, International Journal of Applied Mathematics and Computer Science 25(3): 675–688, DOI: 10.1515/amcs-2015-0049.
[25] Piegat, A. and Plucinski, M. (2017). Fuzzy number division and the multi-granularity phenomenon, Bulletin of the Polish Academy of Sciences: Technical Sciences 65(4): 497–511.
[26] Piegat, A. and Tomaszewska, K. (2013). Decision making under uncertainty using info-gap theory and a new multidimensional RDMinterval arithmetic, Przegląd Elektrotechniczny 89(8): 71–76.
[27] Pilarek, M. (2010). Solving systems of linear equations using the interval extended zero method and multimedia extensions, Scientific Research of the Institute of Mathematics and Computer Science 9(2): 203–212.
[28] Popova, E. (1998). Algebraic solutions to a class of interval equations, Journal of Universal Computer Science 4(1): 48–67.
[29] Sevastjanov, P. and Dymova, L. (2009). A new method for solving internal and fuzzy equations: Linear case, Information Sciences 179: 925–937.
[30] Shary, S. (1996). Algebraic approach to the interval linear static identification, tolerance and control problems, or one more application of Kaucher arithmetic, Reliable Computing 2(1): 3–33.
[31] Shary, S. (2002). A new technique in systems analysis under interval uncertainty and ambiguity, Reliable Computing 8: 321–418.
[32] Sunaga, T. (1958). Theory of an interval algebra and its application to numerical analysis, RAAG Memoirs 2: 547–564.
[33] Warmus, M. (1956). Calculus of approximations, Bulletin de l’Académie Polonaise des Sciences Cl. III 4(5): 253–259.