Feedback design of differential equations of reconstruction for second-order distributed parameter systems
International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 3, pp. 467-475.

Voir la notice de l'article provenant de la source Library of Science

The paper aims at studying a class of second-order partial differential equations subject to uncertainty involving unknown inputs for which no probabilistic information is available. Developing an approach of feedback control with a model, we derive an efficient reconstruction procedure and thereby design differential equations of reconstruction. A characteristic feature of the obtained equations is that their inputs formed by the feedback control principle constructively approximate unknown inputs of the given second-order distributed parameter system.
Keywords: partial differential equation, equations of reconstruction, distributed parameter system
Mots-clés : równanie różniczkowe cząstkowe, układ o parametrach rozłożonych, równanie drugiego rzędu
@article{IJAMCS_2017_27_3_a1,
     author = {Maksimov, V. I. and Mordukhovich, B. S.},
     title = {Feedback design of differential equations of reconstruction for second-order distributed parameter systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {467--475},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a1/}
}
TY  - JOUR
AU  - Maksimov, V. I.
AU  - Mordukhovich, B. S.
TI  - Feedback design of differential equations of reconstruction for second-order distributed parameter systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2017
SP  - 467
EP  - 475
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a1/
LA  - en
ID  - IJAMCS_2017_27_3_a1
ER  - 
%0 Journal Article
%A Maksimov, V. I.
%A Mordukhovich, B. S.
%T Feedback design of differential equations of reconstruction for second-order distributed parameter systems
%J International Journal of Applied Mathematics and Computer Science
%D 2017
%P 467-475
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a1/
%G en
%F IJAMCS_2017_27_3_a1
Maksimov, V. I.; Mordukhovich, B. S. Feedback design of differential equations of reconstruction for second-order distributed parameter systems. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 3, pp. 467-475. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_3_a1/

[1] Banks, H.T. and Kunisch, K. (1980). Estimation Techniques for Distributed Parameter Systems, Birkhäuser, Boston, MA.

[2] Barbashin, E.A. (1970). Introduction to the Theory of Stability, Wolters/Noordhoff, Groningen.

[3] Gajewski, H., Groger, K. and Zacharias, K. (1974). Nichtlineare operatorgleichungen und operator differentialgleichungen, Academic Verlag, Berlin.

[4] Krasovskii, N.N. and Subbotin, A.I. (1988). Game-Theoretial Control Problems, Springer Verlag, New York, NY/Berlin.

[5] Kryazhimskii, A.V. and Osipov, Yu.S. (1995). Inverse Problems for Ordinary Differential Equations: Dynamical Solutions, Gordon and Breach, London.

[6] Kryazhimskii, A.V. and Maksimov, V.I. (2010). Resource-saving infinite-horizon tracking under uncertain input, Applied Mathematics and Computations 217(3): 1135–1140.

[7] Kapustyan, V. and Maksimov, V. (2014). On attaining the prescribed quality of a controlled fourth order system, International Journal of Applied Mathematics and Computer Science 24(1): 75–85, DOI: 10.2478/amcs-2014-0006.

[8] Lasiecka, I., Triggiani, R. and Yao, P.-F. (1999). Inverse/observability estimates for second order hyperbolic equations with variable coefficients, Journal of Mathematical Analysis and Applications 235(1): 13–57.

[9] Lavrentiev, M.M., Romanov, V.G. and Shishatskii, S.P. (1980). Ill-Posed Problems of Mathematical Physics and Analysis, Nauka, Novosibirsk, (in Russian).

[10] Maksimov, V.I. (1995). Approximation of an inverse problem for variational inequalities, Differential and Integral Equations 8(8): 2189–2196.

[11] Maksimov, V.I. (1996). Some dynamical inverse problems for hyperbolic systems, Control and Cybernetics 25(3): 465–481.

[12] Maksimov, V.I. and Pandolfi, L. (2001). The reconstruction of unbounded controls in non-linear dynamical systems, Journal of Applied Mathematics and Mechanics 65(3): 371–380.

[13] Maksimov, V.I. (2002). Dynamics Inverse Problems of Distributed Systems, VSP, Utrecht/Boston, MA.

[14] Maksimov, V.I. and Tröltzsch, F. (2006). Dynamical state and control reconstruction for a phase field model, Dynamics of Continuous, Discrete and Impulsive Systems A: Mathematical Analysis 13(3–4): 419–436.

[15] Mordukhovich, B.S. and Zhang, K. (1997). Minimax control of parabolic equations with Dirichlet boundary conditions and state constraints, Applied Mathematics and Optimization 36(3): 323–360.

[16] Mordukhovich, B.S. (2008). Optimization and feedback design of state-constrained parabolic systems, Pacific Journal of Optimization 4(3): 549–570.

[17] Mordukhovich, B.S. (2011). Optimal control and feedback design of state-constrained parabolic systems in uncertainty conditions, Applicable Analysis 90(6): 1075–1109.

[18] Schwaller, B., Ensminger, D., Dresp-Langley, B. and Ragot, J. (2013). State estimation for a class of nonlinear systems, International Journal of Applied Mathematics and Computer Science 23(2): 383–394, DOI: 10.2478/amcs-2013-0029.

[19] Warga, J. (1972). Optimal Control of Differential and Functional Equations, Academic Press, New York, NY.