Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_2_a9, author = {Aboueisha, H. and Calo, V. M. and Jopek, K. and Moshkov, M. and Paszy\'nska, A. and Paszy\'nski, M. and Skotniczny, M.}, title = {Element partition trees for h-refined meshes to optimize direct solver performance. {Part} {I:} {Dynamic} programming}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {351--365}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a9/} }
TY - JOUR AU - Aboueisha, H. AU - Calo, V. M. AU - Jopek, K. AU - Moshkov, M. AU - Paszyńska, A. AU - Paszyński, M. AU - Skotniczny, M. TI - Element partition trees for h-refined meshes to optimize direct solver performance. Part I: Dynamic programming JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 351 EP - 365 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a9/ LA - en ID - IJAMCS_2017_27_2_a9 ER -
%0 Journal Article %A Aboueisha, H. %A Calo, V. M. %A Jopek, K. %A Moshkov, M. %A Paszyńska, A. %A Paszyński, M. %A Skotniczny, M. %T Element partition trees for h-refined meshes to optimize direct solver performance. Part I: Dynamic programming %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 351-365 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a9/ %G en %F IJAMCS_2017_27_2_a9
Aboueisha, H.; Calo, V. M.; Jopek, K.; Moshkov, M.; Paszyńska, A.; Paszyński, M.; Skotniczny, M. Element partition trees for h-refined meshes to optimize direct solver performance. Part I: Dynamic programming. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 2, pp. 351-365. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a9/
[1] AbouEisha, H., Calo, V.M., Jopek, K.,Moshkov, M., Paszyńska, A., Paszyński, M. and Skotniczny, M. (2016). Element partition trees for two- and three-dimensional h-refined meshes and their use to optimize direct solver performance. Part II: Heuristic algorithms, Journal of Computational and Applied Mathematics, (submitted).
[2] AbouEisha, H., Gurgul, P., Paszyńska, A., Paszyński, M., Kuźnik, K. and Moshkov, M. (2015). An automatic way of finding robust elimination trees for a multi-frontal sparse solver for radical 2D hierarchical meshes, in R. Wyrzykowski et al. (Eds.), Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, Vol. 8385, Springer, Berlin/Heidelberg, pp. 531–540.
[3] AbouEisha, H., Moshkov, M. Calo, V.M., Paszyński, M., Goik, D. and Jopek, K. (2014). Dynamic programming algorithm for generation of optimal elimination trees for multi-frontal direct solver over h-refined grids, Procedia Computer Science 29: 947–959.
[4] Amestoy, P.R., Davis, T.A. and Du, I.S. (1996). An approximate minimum degree ordering algorithm, SIAM Journal of Matrix Analysis Application 17(4): 886–905.
[5] Amestoy, P.R., Duff, I.S. and L’Excellent, J.-Y. (2000). Multifrontal parallel distributed symmetric and unsymmetric solvers, Computer Methods in Applied Mechanics and Engineering 184(2): 501–520.
[6] Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y. and Koster, J. (2001). A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and Applications 23(1): 15–41.
[7] Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y. and Pralet, S. (2006). Hybrid scheduling for the parallel solution of linear systems, Parallel Computing 32(2): 136–156.
[8] Babuška, I. and Rheinboldt, W.C. (1978). Error estimates for adaptive finite element computations, SIAM Journal of Numerical Analysis 15(4): 736–754.
[9] Bao, G., Hu, G. and Liu, D. (2012). An h-adaptive finite element solver for the calculations of the electronic structures, Journal of Computational Physics 231(14): 4967–4979.
[10] Barboteu, M., Bartosz, B. and Kalita, P. (2013). An analytical and numerical approach to a bilateral contact problem with nonmonotone friction, International Journal of Applied Mathematics and Computer Science 23(2): 263–276, DOI: 10.2478/amcs-2013-0020.
[11] Becker, R., Kapp, H. and Rannacher, R. (2000). Adaptive finite element methods for optimal control of partial differential equations: Basic concept, SIAM Journal on Control and Optimisation 39(1): 113–132.
[12] Belytschko, T. and Tabbar, M. (1993). H-adaptive finite element methods for dynamic problems, with emphasis on localization, International Journal for Numerical Methods in Engineering 36(24): 4245–4265.
[13] Demkowicz, L. (2006). Computing with hp-Adaptive Finite Elements, Vol. I: One and Two Dimensional Elliptic and Maxwell Problems, Chapman and Hall/CRC, Boca Raton, FL.
[14] Duff, I.S., Erisman, A.M. and Reid, J.K. (1986). Direct Methods for Sparse Matrices, Oxford University Press, Oxford.
[15] Duff, I.S. and Reid, J.K. (1983). The multifrontal solution of indefinite sparse symmetric linear, ACM Transactions on Mathematical Software 9(3): 302–325.
[16] Duff, I.S. and Reid, J.K. (1984). The multifrontal solution of unsymmetric sets of linear equations, SIAMJournal on Scientific and Statistical Computing 5(3): 633–641.
[17] Errikson, K. and Johnson, C. (1991). Adaptive finite element methods for parabolic problems. I: A linear model problem, SIAM Journal on Numerical Analysis 28(1): 43–77.
[18] Fiałko, S. (2009a). A block sparse shared-memory multifrontal finite element solver for problems of structural mechanics, Computer Assisted Mechanics and Engineering Science 16: 117–131.
[19] Fiałko, S. (2009b). The block subtracture multifrontal method for solution of large finite element equation sets, Technical Transactions 8: 175–188.
[20] Fiałko, S. (2010). PARFES: A method for solving finite element linear equations on multi-core computers, Advanced Engineering Software 40(12): 1256–1265.
[21] Hughues, T. (2000). The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover, New York, NY.
[22] Karczewska, A., Rozmej, P., Szczeciński, M. and Boguniewicz, B. (2016). A finite element method for extended KdV equations, International Journal of Applied Mathematics and Computer Science 26(3): 555–567, DOI: 10.1515/amcs-2016-0039.
[23] Kardani, M., Nazem, M., Abbo, A.J., Sheng, D. and Sloan, S.W. (2012). Refined h-adaptive finite element procedure for large deformation geotechnical problems, Computational Mechanics 49(1): 21–33.
[24] Karypis, G. and Kumar, V. (1999). A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM Journal on Scientific Computing 20(1): 359–392.
[25] Liu, J. (1990). The role of elimination trees in sparse factorization, SIAM Journal of Matrix Analysis Applications 11(1): 134–172.
[26] Niemi, A., Babuška, I., Pitkaranta, J. and Demkowicz, L. (2012). Finite element analysis of the Girkmann problem using the modern hp-version and the classical h-version, Procedia Computer Science 28: 123–134.
[27] Paszyński, M. (2016). Fast Solvers for Mesh Based Computations, Taylor Francis/CRC Press, Boca Raton, FL.
[28] Patro, S.K., Selvam, P.R. and Bosch, H. (2013). Adaptive h-finite element modeling of wind flow around bridges, Engineering Structures 48: 569–577.
[29] Schaefer, R., Łoś, M., Sieniek, M., Demkowicz, L. And Paszyński, M. (2015). Quasi-linear computational cost adaptive solvers for three dimensional modeling of heating of a human head induced by cell phone, Journal of Computational Science 11: 163–174.
[30] Strug, B., Paszyńska, A., Paszyński, M. and Grabska, E. (2013). Using a graph grammar system in the finite element method, International Journal of Applied Mathematics and Computer Science 23(4): 839–853, DOI: 10.2478/amcs-2013-0063.
[31] Zienkiewicz, O.C., Taylor, R. and Z., Z.J. (2013). The Finite Element Method: Its Basis and Fundamentals, Elsevier, Amsterdam.