Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_2_a8, author = {Saha, S. and Roy, P. K.}, title = {A comparative study between two systems with and without awareness in controlling {HIV/AIDS}}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {337--350}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a8/} }
TY - JOUR AU - Saha, S. AU - Roy, P. K. TI - A comparative study between two systems with and without awareness in controlling HIV/AIDS JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 337 EP - 350 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a8/ LA - en ID - IJAMCS_2017_27_2_a8 ER -
%0 Journal Article %A Saha, S. %A Roy, P. K. %T A comparative study between two systems with and without awareness in controlling HIV/AIDS %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 337-350 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a8/ %G en %F IJAMCS_2017_27_2_a8
Saha, S.; Roy, P. K. A comparative study between two systems with and without awareness in controlling HIV/AIDS. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 2, pp. 337-350. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a8/
[1] Abiodun, G.J., Marcus, N., Okosun, K.O. and Witbooi, P.J. (2013). A model for control of HIV/AIDS with parental care, International Journal of Biomathematics 6(02): 1350006.
[2] Al-arydah, M. and Smith, R. (2015). Adding education to test and treat: Can we overcome drug resistance?, Journal of Applied Mathematics 2015, Article ID 781270, DOI: 10.1155/2015/781270.
[3] Barbalat, I. (1959). Syst`emes d’´equations diff`erentielles d’oscillations non-linéaires, Revue Roumaine de Mathématiques Pures et Appliquées 4(2): 267–270.
[4] Bhunu, C., Garira, W. and Magombedze, G. (2009). Mathematical analysis of a two strain HIV/AIDS model with antiretroviral treatment, Acta Biotheoretica 57(3): 361–381.
[5] Cai, L., Li, X., Ghosh, M. and Guo, B. (2009). Stability analysis of an HIV/AIDS epidemic model with treatment, Journal of Computational and Applied Mathematics 229(1): 313–323.
[6] Castillo-Chavez, C., Blower, S., Driessche, P., Kirschner, D. and Yakubu, A.-A. (2002). Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory, Springer, New York, NY.
[7] Castillo-Chavez, C. and Song, B. (2004). Dynamical models of tuberculosis and their applications, Mathematical Biosciences and Engineering 1(2): 361–404.
[8] Chatterjee, A.N. and Roy, P.K. (2012). Anti-viral drug treatment along with immune activator IL-2: A control-based mathematical approach for HIV infection, International Journal of Control 85(2): 220–237.
[9] Chatterjee, A.N., Saha, S. and Roy, P.K. (2015). Human immunodeficiency virus/acquired immune deficiency syndrome: Using drug from mathematical perceptive, World Journal of Virology 4(4): 356.
[10] Elbasha, E.H. and Gumel, A.B. (2006). Theoretical assessment of public health impact of imperfect prophylactic HIV-1 vaccines with therapeutic benefits, Bulletin of Mathematical Biology 68(3): 577.
[11] Gumel, A.B., Castillo-Chavez, C.,Mickens, R.E. and Clemence, D.P. (2006). Mathematical Studies on Human Disease Dynamics: Emerging Paradigms and Challenges, Vol. 410, American Mathematical Society, Boston, MA.
[12] Hove-Musekwa, S.D. and Nyababza, F. (2009). The dynamics of an HIV/AIDS model with screened disease carriers, Computational and Mathematical Methods in Medicine 10(4): 287–305.
[13] Hyman, J.M., Li, J. and Stanley, E.A. (2003). Modeling the impact of random screening and contact tracing in reducing the spread of HIV, Mathematical Biosciences 181(1): 17–54.
[14] Kiss, I.Z., Cassell, J., Recker, M. and Simon, P.L. (2010). The impact of information transmission on epidemic outbreaks, Mathematical Biosciences 225(1): 1–10.
[15] Korobeinikov, A. and Maini, P.K. (2004). A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Mathematical Biosciences and Engineering 1(1): 57–60.
[16] Misra, A., Sharma, A. and Singh, V. (2011). Effect of awareness programs in controlling the prevalence of an epidemic with time delay, Journal of Biological Systems 19(02): 389–402.
[17] Nyabadza, F. (2006). A mathematical model for combating HIV/AIDS in southern Africa: Will multiple strategies work?, Journal of Biological Systems 14(03): 357–372.
[18] Roy, P.K. (2015). Mathematical Models for Therapeutic Approaches to Control HIV Disease Transmission, Springer, Singapore.
[19] Roy, P. K., Saha, S. and Al Basir, F. (2015). Effect of awareness programs in controlling the disease HIV/AIDS: An optimal control theoretic approach, Advances in Difference Equations 2015(1): 217–234.
[20] Samanta, S. and Chattopadhyay, J. (2014). Effect of awareness program in disease outbreak—a slow—fast dynamics, Applied Mathematics and Computation 237(8): 98–109.
[21] Smith, R.J., Okano, J.T., Kahn, J.S., Bodine, E.N. and Blower, S. (2010). Evolutionary dynamics of complex networks of HIV drug-resistant strains: The case of San Francisco, Science 327(5966): 697–701.
[22] Statistics (2006). Statistics of South Africa. Website of the mid-year population estimates, Statistical release P0302, South Africa, http://www.statssa.gov.za/publications.
[23] Tripathi, A., Naresh, R. and Sharma, D. (2007). Modeling the effect of screening of unaware infectives on the spread of HIV infection, Applied Mathematics and Computation 184(2): 1053–1068.
[24] UDAIDS/WHO (2014). Website of the UDAIDS/WHO epidemiological fact sheets on HIV and AIDS, http://www.who.int/hiv/en/.
[25] UDAIDS/WHO (2015). Website of the UDAIDS/WHO epidemiological fact sheets on HIV and AIDS, http://www.who.int/hiv/en/.
[26] Van den Driessche, P. and Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences 180(1): 29–48.