Comparative calculation of the fuel-optimal operating strategy for diesel hybrid railway vehicles
International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 2, pp. 323-336.

Voir la notice de l'article provenant de la source Library of Science

In contrast to road-based traffic, the track as well as the corresponding duty cycle for railways are known beforehand, which represents a great advantage during the development of operating strategies for hybrid vehicles. Hence the benefits of hybrid vehicles regarding the fuel consumption can be exploited by means of an off-line optimisation. In this article, the fuel-optimal operating strategy is calculated for one specified track using two hybrid railway vehicles with different kinds of energy storage systems: on the one hand, a lithium-ion battery (high-energy storage) and, on the other, a double layer capacitor (high-power storage). For this purpose, control-oriented simulation models are developed for each architecture addressing the main effects contributing to the longitudinal dynamics of the power train. Based on these simulation models, the fuel-optimal operating strategy is calculated by two different approaches: Bellman’s dynamic programming, a well-known approach in this field, and an innovative sensitivity-based optimisation.
Keywords: hybrid railway vehicle, fuel optimal energy management, dynamic programming, sensitivity optimisation
Mots-clés : pojazd szynowy, pojazd hybrydowy, gospodarka energetyczna, programowanie dynamiczne
@article{IJAMCS_2017_27_2_a7,
     author = {Leska, M. and Aschemann, H. and Melzer, M. and Meinert, M.},
     title = {Comparative calculation of the fuel-optimal operating strategy for diesel hybrid railway vehicles},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {323--336},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a7/}
}
TY  - JOUR
AU  - Leska, M.
AU  - Aschemann, H.
AU  - Melzer, M.
AU  - Meinert, M.
TI  - Comparative calculation of the fuel-optimal operating strategy for diesel hybrid railway vehicles
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2017
SP  - 323
EP  - 336
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a7/
LA  - en
ID  - IJAMCS_2017_27_2_a7
ER  - 
%0 Journal Article
%A Leska, M.
%A Aschemann, H.
%A Melzer, M.
%A Meinert, M.
%T Comparative calculation of the fuel-optimal operating strategy for diesel hybrid railway vehicles
%J International Journal of Applied Mathematics and Computer Science
%D 2017
%P 323-336
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a7/
%G en
%F IJAMCS_2017_27_2_a7
Leska, M.; Aschemann, H.; Melzer, M.; Meinert, M. Comparative calculation of the fuel-optimal operating strategy for diesel hybrid railway vehicles. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 2, pp. 323-336. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a7/

[1] Barré, A., Deguilhem, B., Grolleau, S., Gérard,M., Suard, F. and Riu, D. (2013). A review on lithium-ion battery ageing mechanisms and estimations for automotive applications, Journal of Power Sources 241: 680–689.

[2] Bellman, R. (1952). On the theory of dynamic programming, Proceedings of the National Academy of Sciences of the USA 38(8): 716–719.

[3] Bellman, R. (2003). Dynamic Programming, Dover Publications, Mineola, NY.

[4] Bittner, A., Zhu, M., Yang, Y., Waibel, H., Konuma, M., Starke, U. and Weber, C. (2012). Ageing of electrochemical double layer capacitors, Journal of Power Sources 203: 262–273.

[5] Bohlen, O., Kowal, J. and Sauer, D.U. (2007a). Ageing behaviour of electrochemical double layer capacitors. Part I: Experimental study and ageing model, Journal of Power Sources 172(1): 468–475.

[6] Bohlen, O., Kowal, J. and Sauer, D.U. (2007b). Ageing behaviour of electrochemical double layer capacitors. Part II: Lifetime simulation model for dynamic applications, Journal of Power Sources 173(1): 626–632.

[7] Brahma, A., Guezennec, Y. and Rizzoni, G. (2000). Optimal energy management in series hybrid electric vehicles, Proceedings of the American Control Conference, Chicago, IL, USA, pp. 60–64.

[8] Dittus, H., Hülsebusch, D. and Ungethüm, J. (2011). Reducing DMU fuel consumption by means of hybrid energy storage, European Transport Research Review 3(3): 149–159.

[9] Guzzella, L. (2013). Automobiles of the future and the role of automatic control in those systems, Annual Reviews in Control 33(1): 1–10.

[10] Guzzella, L. and Sciarretta, A. (2005). Vehicle Propulsion Systems: Introduction to Modeling and Optimization, Springer, Berlin.

[11] He, H., Xiong, R., Zhao, K. and Liu, Z. (2013). Energy management strategy research on a hybrid power system by hardware-in-loop experiments, Applied Energy 112: 1311–1317.

[12] Herb, F. (2010). Alterungsmechanismen in Lithium-Ionen-Batterien und PEM-Brennstoffzellen und deren Einfluss auf die Eigenschaften von daraus bestehenden Hybrid-Systemen, PhD thesis, University of Ulm, Ulm.

[13] Hillmansen, S. and Roberts, C. (2007). Energy storage devices in hybrid railway vehicles: A kinematic analysis, Proceedings of the Institution of Mechanical Engineers: Journal of Automobile Engineering 221(1):135–140.

[14] Hillmansen, S., Roberts, C. and McGordon, A. (2009). DMV Hybrid Concept Evaluation, Final report, EU project, www.birmingham.ac.uk/Documents/college-eps/railway/HybridRailReportDMUV1.pdf.

[15] Katranik, T. (2010). Analytical method to evaluate fuel consumption of hybrid electric vehicles at balanced energy content of the electric storage devices, Applied Energy 87(11): 3330–3339.

[16] Katrasnik, T., Trenc, F. and Opresnik, S. (2007). Analysis of energy conversion efficiency in parallel and series hybrid powertrains, IEEE Transactions on Vehicular Technology 56(6): 3649–3659.

[17] Leska, M. and Aschemann, H. (2015). Fuel-optimal combined driving strategy and energy management for a parallel hybrid electric railway vehicle, Proceedings of the 20th International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 1127–1132.

[18] Leska, M., Grüning, T., Aschemann, H. and Rauh, A. (2013). Optimal trajectory planning for standard and hybrid railway vehicles with a hydro-mechanic transmission, Proceedings of the European Control Conference (ECC), Zurich, Switzerland, pp. 4550–4555.

[19] Leska, M., Prabel, R., Aschemann, H. and Rauh, A. (2014). Operating strategy for hybrid railway vehicles based on a sensitivity analysis, Proceedings of the World Congress of the International Federation of Automatic Control (IFAC), Cape Town, South Africa, pp. 942–947.

[20] Lorf, C. (2013). Optimum Battery Capacity for Electric Vehicles with Particular Focus on Battery Degradation, PhD thesis, Imperial College London, London.

[21] Marongiu, A., Roscher, M. and Sauer, D.U. (2015). Influence of the vehicle-to-grid strategy on the aging behavior of lithium battery electric vehicles, Applied Energy 137: 899–912.

[22] Meinert, M., Melzer, M., Kamburow, C., Palacin, R., Leska, M. and Aschemann, H. (2015). Benefits of hybridisation of diesel driven rail vehicles: Energy management strategies and life-cycle costs appraisal, Applied Energy 157: 897–904.

[23] Meissner, E. and Richter, G. (2005). The challenge to the automotive battery industry: The battery has to become an increasingly integrated component within the vehicle electric power system, Journal of Power Sources 144(2): 438–460.

[24] Moreno, J., Ortuzar, M. and Dixon, J. (2006). Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks, IEEE Transactions on Industrial Electronics 53(2): 614–623.

[25] Ogawa, T., Yoshihara, H., Wakao, S., Kondo, K. and Kondo, M. (2007). Energy consumption analysis of FC-EDLC hybrid railway vehicle by dynamic programming, Proceedings of the European Conference on Power Electronics and Applications, Aalborg, Denmark, pp. 1–8.

[26] Ohue, K., Utsunomiya, T., Hatozaki, O., Yoshimoto, N., Egashira, M. and Morita, M. (2011). Self-discharge behavior of polyacenic semiconductor and graphite negative electrodes for lithium-ion batteries, Journal of Power Sources 196(7): 3604–3610.

[27] Omar, N., Monem, M.A., Firouz, Y., Salminen, J., Smekens, J., Hegazy, O., Gaulous, H., Mulder, G., den Bossche, P.V., Coosemans, T. and Mierlo, J.V. (2014). Lithium iron phosphate based battery—assessment of the aging parameters and development of cycle life model, Applied Energy 113: 1575–1585.

[28] Ott, T., Zurbriggen, F., Onder, C. and Guzzella, L. (2012). Cycle-averaged efficiency of hybrid electric vehicles, Proceedings of the Institution of Mechanical Engineers D: Journal of Automobile Engineering 227(1): 78–86.

[29] Pisu, P. and Rizzoni, G. (2007). A comparative study of supervisory control strategies for hybrid electric vehicles, IEEE Transactions on Control Systems Technology 15(3): 506–518.

[30] Rauh, A. and Aschemann, H. (2012). Sensitivity-based state and parameter estimation for lithium-ion battery systems, Proceedings of the 9th International Conference on System Identification and Control Problems, SICPRO’12, Moscow, Russia, pp. 469–485.

[31] Rothgang, S., Baumhöfer, T., van Hoek, H., Lange, T., Doncker, R.W.D. and Sauer, D.U. (2015). Modular battery design for reliable, flexible and multi-technology energy storage systems, Applied Energy 137: 931–937.

[32] Sarre, G., Blanchard, P. and Broussely, M. (2004). Aging of lithium-ion batteries, Journal of Power Sources 127(1–2): 65–71.

[33] Torres, J., Gonzalez, R., Gimenez, A. and Lopez, J. (2014). Energy management strategy for plug-in hybrid electric vehicles. A comparative study, Applied Energy 113: 816–824.

[34] Waag, W., Käbitz, S. and Sauer, D.U. (2013). Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application, Applied Energy 102: 885–897.

[35] Wang, A. and Yang, W. (2006). Design of energy management strategy in hybrid vehicles by evolutionary fuzzy system. Part I: Fuzzy logic controller development, Proceedings of the 6th World Congress on Intelligent Control and Automation (WCICA), Dalian, China, pp. 8324–8328.