Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_2_a5, author = {Doma\'nski, P. D. and {\L}awry\'nczuk, M.}, title = {Assessment of the {GPC} control quality using {non-Gaussian} statistical measures}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {291--307}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a5/} }
TY - JOUR AU - Domański, P. D. AU - Ławryńczuk, M. TI - Assessment of the GPC control quality using non-Gaussian statistical measures JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 291 EP - 307 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a5/ LA - en ID - IJAMCS_2017_27_2_a5 ER -
%0 Journal Article %A Domański, P. D. %A Ławryńczuk, M. %T Assessment of the GPC control quality using non-Gaussian statistical measures %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 291-307 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a5/ %G en %F IJAMCS_2017_27_2_a5
Domański, P. D.; Ławryńczuk, M. Assessment of the GPC control quality using non-Gaussian statistical measures. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 2, pp. 291-307. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a5/
[1] Anderson, T.W. and Darling, D.A. (1954). A test of goodness-of-fit, Journal of the American Statistical Association 49(268): 765–769.
[2] Åström, K.J. (1967). Computer control of a paper machine-an application of linear stochastic control theory, IBM Journal 11(4): 389–405.
[3] Axensten, P. (2006). Cauchy CDF, PDF, inverse CDF, parameter fit and random generator, http://www.mathworks.com/matlabcentral/fileexchange/11749-cauchy/.
[4] Borak, S., Misiorek, A. and Weron, R. (2011). Models for heavy-tailed asset returns, in P. Cizek et al. (Eds.), Statistical Tools for Finance and Insurance, 2nd Edn., Springer, New York, NY, pp. 21–56.
[5] Camacho, E.F. and Bordons, C. (1999). Model Predictive Control, Springer, London.
[6] Choudhury, M.A.A.S., Shah, S. and Thornhill, N. (2008). Diagnosis of Process Nonlinearities and Valve Stiction, Springer, Heidelberg.
[7] Clarke, W. and Mohtadi, C. (1989). Properties of generalized predictive control, Automatica 25(5): 859–875.
[8] Clarke, W., Mohtadi, C. and Tuffs, P.S. (1987a). Generalized predictive control. I: The basic algorithm, Automatica 23(2): 137–148.
[9] Clarke, W., Mohtadi, C. and Tuffs, P.S. (1987b). Generalized predictive control. II: Extensions and interpretations, Automatica 23(2): 149–160.
[10] Cramer, H. (1928). On the composition of elementary errors, Scandinavian Actuarial Journal 1928(1): 13–74.
[11] Cross, R. and Iqbal, A. (1995). The Rank Xerox experience: Benchmarking ten years on, in A. Rolstadås (Ed.), Benchmarking—Theory and Practice, Springer US, Boston, MA, pp. 3–10.
[12] Domański, P.D. (2015). Non-Gaussian properties of the real industrial control error in SISO loops, Proceedings of the 19th International Conference on System Theory, Control and Computing, Cheile Gradistei, Romania, pp. 877–882.
[13] Domański, P.D. (2016). Non-Gaussian and persistence measures for control loop quality assessment, Chaos: An Interdisciplinary Journal of Nonlinear Science 26(4): 043105.
[14] Eisenhart, C. (2006). Laws of error. III: Later (non-Gaussian) distributions, in S. Kotz et al. (Eds.), Encyclopedia of Statistical Sciences, Wiley, Hoboken, NJ, Chapter 6.
[15] Harris, T. (1989). Assessment of closed loop performance, Canadian Journal of Chemical Engineering 67(5): 856–861.
[16] Hill, I.D., Hill, R. and Holder, R.L. (1976). Algorithm AS 99: Fitting Johnson curves by moments, Journal of the Royal Statistical Society C: Applied Statistics 25(2): 180–189.
[17] Horch, A. and Isaksson, A.J. (1998). A modified index for control performance assessment, Proceedings of the 1998 American Control Conference, Philadelphia, PA, USA, Vol. 6, pp. 3430–3434.
[18] Hugo, A.J. (2006). Performance assessment of single-loop industrial controllers, Journal of Process Control 16(8): 785–794.
[19] Jelali, M. (2006). An overview of control performance assessment technology and industrial applications 14(5): 441–466.
[20] Jelali, M. (2013). Control Performance Management in Industrial Automation: Assessment, Diagnosis and Improvement of Control Loop Performance, Springer-Verlag, London.
[21] Koutrouvelis, I.A. (1980). Regression-type estimation of the parameters of stable laws, Journal of the American Statistical Association 75(372): 918–928.
[22] Ławryńczuk, M. (2015). Nonlinear state-space predictive control with on-line linearisation and state estimation, International Journal of Applied Mathematics and Computer Science 25(4): 833–847, DOI: 10.1515/amcs-2015-0060.
[23] Lilliefors, H. (1967). On the Kolmogorov–Smirnov test for normality with mean and variance unknown, Journal of the American Statistical Association 62(318): 399–402.
[24] Maciejowski, J.M. (2002). Predictive Control with Constraints, Prentice Hall, Harlow.
[25] Ordys, A., Uduehi, D. and Johnson, M.A. (2007). Process Control Performance Assessment—From Theory to Implementation, Springer, London.
[26] Paulonis, M.A. and Cox, J.W. (2003). A practical approach for large-scale controller performance assessment, diagnosis, and improvement, Journal of Process Control 13(2): 155–168.
[27] Schäfer, J. and Cinar, A. (2004). Multivariable MPC system performance assessment, monitoring, and diagnosis, Journal of Process Control 14(2): 113–129.
[28] Seborg, D.E., Mellichamp, D.A., Edgar, T.F. and Doyle, F.J. (2010). Process Dynamics and Control, Wiley, Hoboken, NJ.
[29] Shapiro, S.S. and Wilk, M.B. (1965). An analysis of variance test for normality (complete samples), Biometrika 52(3–4): 591–611.
[30] Shinskey, F.G. (2002). Process control: As taught vs. as practiced, Industrial and Engineering Chemistry Research 41(16): 3745–3750.
[31] Smuts, J.F. and Hussey, A. (2011). Requirements for successfully implementing and sustaining advanced control applications, ISA POWID Conference, Research Triangle Park, NC, USA, pp. 89–105.
[32] Spinner, T., Srinivasan, B. and Rengaswamy, R. (2014). Data-based automated diagnosis and iterative retuning of proportional-integral (PI) controllers, Control Engineering Practice 29: 23–41.
[33] Srinivasan, B. and Rengaswamy, R. (2012). Automatic oscillation detection and characterization in closed-loop systems, Control Engineering Practice 20(8): 733–746.
[34] Tatjewski, P. (2007). Advanced Control of Industrial Processes, Structures and Algorithms, Springer, London.
[35] Tatjewski, P. (2010). Supervisory predictive control and on-line set-point optimization, International Journal of Applied Mathematics and Computer Science 20(3): 483–495, DOI: 10.2478/v10006-010-0035-1.
[36] Tatjewski, P. (2014). Disturbance modeling and state estimation for offset-free predictive control with state-space process models, International Journal of Applied Mathematics and Computer Science 24(2): 313–323, DOI: 10.2478/amcs-2014-0023.
[37] Thornhill, N.F. and Shah, S.L. (2005). New directions in control loop assessment and diagnosis, Computing Control Engineering Journal 16(4): 18–22.
[38] Yang, X. and Maciejowski, J.M. (2015). Fault tolerant control using Gaussian processes and model predictive control, International Journal of Applied Mathematics and Computer Science 25(1): 133–148, DOI: 10.1515/amcs-2015-0010.
[39] Zhuo, H. (2009). Research of performance assessment and monitoring for multivariate model predictive control system, 4th International Conference on Computer Science Education, Nanning, China, pp. 509–514.