Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_2_a14, author = {Bonollo, M. and Di Persio, L. and Mammi, L. and Oliva, I.}, title = {Estimating the counterparty risk exposure by using the {Brownian} motion local time}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {435--447}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a14/} }
TY - JOUR AU - Bonollo, M. AU - Di Persio, L. AU - Mammi, L. AU - Oliva, I. TI - Estimating the counterparty risk exposure by using the Brownian motion local time JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 435 EP - 447 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a14/ LA - en ID - IJAMCS_2017_27_2_a14 ER -
%0 Journal Article %A Bonollo, M. %A Di Persio, L. %A Mammi, L. %A Oliva, I. %T Estimating the counterparty risk exposure by using the Brownian motion local time %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 435-447 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a14/ %G en %F IJAMCS_2017_27_2_a14
Bonollo, M.; Di Persio, L.; Mammi, L.; Oliva, I. Estimating the counterparty risk exposure by using the Brownian motion local time. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 2, pp. 435-447. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a14/
[1] Antonov, A., Issakov, S. and Mechkov, S. (2015). Backward induction for future values, Risk.net, Numerix research paper, http://www.risk.net/derivatives/2387384/backward-inductionfuture-values.
[2] BCBS (2006). Basel II: International convergence of capital measurement and capital standards: A revised framework-comprehensive version, Technical Report 128, BCBS Paper, http://www.bis.org/publ/bcbs128.pdf.
[3] BCBS (2011). Basel III: A global regulatory framework for more resilient banks and banking systems—revised version, Technical Report 189, BCBS Paper, http://www.bis.org/publ/bcbs189.pdf.
[4] Bernis, G. and Scotti, S. (2017). Alternative to beta coefficients in the context of diffusions, Quantitative Finance 17(2): 275–288.
[5] Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities, The Journal of Political Economy 81(3): 637–654.
[6] Bonollo, M., Di Persio, L., Oliva, I. and Semmoloni, A. (2015). A quantization approach to the counterparty credit exposure estimation, http://ssrn.com/abstract=2574384.
[7] Borodin, A. and Salminen, P. (2002). Handbook of Brownian Motion: Facts and Formulae, 2nd Edn., Birkh¨auser, Basel.
[8] Brigo, D., Morini, M. and Pallavicini, A. (2013). Counterparty Credit Risk, Collateral and Funding: With Pricing Cases for All Asset Classes, Wiley, Chichester.
[9] Brydges, D., Van Der Hofstad, R. and Konig, W. (2007). Joint density for the local times of continuous-time Markov chains, The Annals of Probability 35(4): 1307–1332.
[10] Callegaro, G., Fiorin, L. and Grasselli, M. (2015). Quantized calibration in local volatility, Risk.net (Cutting Edge: Derivatives Pricing) (2015): 56–67.
[11] Callegaro, G., Fiorin, L. and Grasselli, M. (2017). Pricing via quantization in stochastic volatility models, Quantitative Finance, DOI: 10.1080/14697688.2016.1255348, (in print).
[12] Callegaro, G. and Sagna, A. (2013). An application to credit risk of a hybrid Monte Carlo optimal quantization method, Journal of Computational Finance 16(4): 123–156.
[13] Castagna, A. (2013). Fast computing in the CCR and CVA measurement, Technical report, IASONWorking paper.
[14] Chevalier, E., Ly Vath, V. and Scotti, S. (2013). An optimal dividend and investment control problem under debt constraints, Journal on Financial Mathematics 4(1): 297–326.
[15] Cordoni, F. and Di Persio, L. (2014). Backward stochastic differential equations approach to hedging, option pricing and insurance problems, International Journal of Stochastic Analysis 2014, Article ID: 152389, DOI: 10.1155/2014/152389.
[16] Cordoni, F. and Di Persio, L. (2016). A BSDE with delayed generator approach to pricing under counterparty risk and collateralization, International Journal of Stochastic Analysis 2016, Article ID: 1059303, DOI: 10.1155/2016/1059303.
[17] Di Persio, L., Pellegrini, G. and Bonollo, M. (2015). Polynomial chaos expansion approach to interest rate models, Journal of Probability and Statistics 2015, Article ID: 369053, DOI: 10.1155/2015/369053.
[18] Di Persio, L. and Perin, I. (2015). An ambit stochastic approach to pricing electricity forward contracts: The case of the German energy market, Journal of Probability and Statistics 2015, Article ID: 626020, DOI: 10.1155/2015/626020.
[19] Doney, R. and Yor, M. (1998). On a formula of Takacs for Brownian motion with drift, Journal of Applied Probability 35(2): 272–280.
[20] Glasserman, P. (2012). Risk horizon and rebalancing horizon in portfolio risk measurement, Mathematical Finance 22(2): 215–249.
[21] Haug, E. (1983). The Complete Guide to Option Pricing Formulas, McGraw-Hill, New York, NY.
[22] Heston, S. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies 6(2): 327–343.
[23] Hull, J. (1999). Options, Futures, and Other Derivatives, Pearson Education, Englewood Cliffs, NJ.
[24] Hull, J. and White, A. (1990). Pricing interest-rate derivative securities, The Review of Financial Studies 3(4): 573–592.
[25] Karatzas, I. and Shreve, S. (1991). Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, NY.
[26] Lam, K., Yu, P. and Xin, L. (2009). Accumulator pricing, 2009 Symposium on Computational Intelligence for Financial Engineering, Nashville, TN, USA.
[27] Lelong, J. (2016). Pricing American options using martingale bases, https://hal.archives-ouvertes.fr/hal-01299819.
[28] Lévy, P. (1939). Sur certains processus stochastiques homogènes, Compositio Mathematica 7: 283–339.
[29] Lévy, P. (1965). Processus stochastiques et mouvement brownien, Gauthier-Villars, Paris.
[30] Liu, Q. (2015). Calculation of credit valuation adjustment based on least square Monte Carlo methods, Mathematical Problems in Engineering 2015, Article ID: 959312, DOI: 10.1155/2015/959312.
[31] Mijatovic, A. (2010). Local time and the pricing of time-dependent barrier options, Finance and Stochastics 14(13): 13–48.
[32] Moody’s (2009). Moody’s global corporate finance recovery rates, Technical report, Moody’s Investors Service.
[33] Pagés, G. and Wilbertz, B. (2011). GPGPUs in computational finance: Massive-parallel computing for American style options, Technical report, Laboratoire de Probabilité, Paris VI–VII.
[34] Saita, F. (2007). Value at Risk and Bank Capital Management, Elsevier, Cambridge, MA.
[35] Sinkala, W. and Nkalashe, T. (2015). Lie symmetry analysis of a first-order feedback model of option pricing, Advances in Mathematical Physics 2015, Article ID: 361785, DOI: 10.1155/2015/361785.
[36] Takacs, L. (1995). On the local time of the Brownian motion, The Annals of Applied Probability 5(3): 741–756.
[37] Vasicek, O. (1977). An equilibrium characterization of the term structure, Journal of Financial Economics 5(2): 177–188.