Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_2_a13, author = {Zuo, C. and Wu, L. and Zeng, Z. F. and Wei, H. L.}, title = {Stochastic fractal based multiobjective fruit fly optimization}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {417--433}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a13/} }
TY - JOUR AU - Zuo, C. AU - Wu, L. AU - Zeng, Z. F. AU - Wei, H. L. TI - Stochastic fractal based multiobjective fruit fly optimization JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 417 EP - 433 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a13/ LA - en ID - IJAMCS_2017_27_2_a13 ER -
%0 Journal Article %A Zuo, C. %A Wu, L. %A Zeng, Z. F. %A Wei, H. L. %T Stochastic fractal based multiobjective fruit fly optimization %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 417-433 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a13/ %G en %F IJAMCS_2017_27_2_a13
Zuo, C.; Wu, L.; Zeng, Z. F.; Wei, H. L. Stochastic fractal based multiobjective fruit fly optimization. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 2, pp. 417-433. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a13/
[1] Aguirre, A.H., Rionda, S.B., Coello Coello, C.A., Lizárraga, G.L. and Montes, E.M. (2004). Handling constraints using multiobjective optimization concepts, International Journal for Numerical Methods in Engineering 59(15): 1989–2017.
[2] Alcalá-Fdez, J., Sanchez, L., Garcia, S., del Jesus, M.J., Ventura, S., Garrell, J.M., Otero, J., Romero, C., Bacardit, J. and Rivas, V.M. (2009). KEEL: A software tool to assess evolutionary algorithms for data mining problems, Soft Computing 13(3): 307–318.
[3] Asafuddoula, M., Ray, T. and Sarker, R. (2015). A differential evolution algorithm with constraint sequencing: An efficient approach for problems with inequality constraints, Applied Soft Computing 36: 101–113.
[4] Awad, N.H., Ali, M.Z., Suganthan, P.N. and Jaser, E. (2016). A decremental stochastic fractal differential evolution for global numerical optimization, Information Sciences 372: 470–491.
[5] Bader, J. and Zitzler, E. (2011). Hype: An algorithm for fast hypervolume-based many-objective optimization, Evolutionary computation 19(1): 45–76.
[6] Ben Aicha, F., Bouani, F. and Ksouri, M. (2013). A multivariable multiobjective predictive controller, International Journal of Applied Mathematics and Computer Science 23(1): 35–45, DOI: 10.2478/amcs-2013-0004.
[7] Bilski, P. and Wojciechowski, J. (2014). Artificial intelligence methods in diagnostics of analog systems, International Journal of Applied Mathematics and Computer Science 24(2): 271–282, DOI: 10.2478/amcs-2014-0020.
[8] Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999). Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press, Oxford.
[9] Chen, B., Zeng, W., Lin, Y. and Zhang, D. (2015). A new local search-based multiobjective optimization algorithm, IEEE Transactions on Evolutionary Computation 19(1): 50–73.
[10] Chen, P.-W., Lin, W.-Y., Huang, T.-H. and Pan, W.-T. (2013). Using fruit fly optimization algorithm optimized grey model neural network to perform satisfaction analysis for e-business service, Applied Mathematics Information Sciences 7(2L): 459–465.
[11] Cheng, R., Jin, Y., Narukawa, K. and Sendhoff, B. (2015). A multiobjective evolutionary algorithm using Gaussian process-based inverse modeling, IEEE Transactions on Evolutionary Computation 19(6): 838–856.
[12] Coello, C.A.C., Pulido, G.T. and Lechuga, M.S. (2004). Handling multiple objectives with particle swarm optimization, IEEE Transactions on Evolutionary Computation 8(3): 256–279.
[13] Coello, C.C. (2006). Evolutionary multi-objective optimization: A historical view of the field, IEEE Computational Intelligence Magazine 1(1): 28–36.
[14] Deb, K. (2000). An efficient constraint handling method for genetic algorithms, Computer Methods in Applied Mechanics and Engineering 186(2): 311–338.
[15] Deb, K. and Jain, H. (2014). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach. Part I: Solving problems with box constraints, IEEE Transactions on Evolutionary Computation 18(4): 577–601.
[16] Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation 6(2): 182–197.
[17] Deb, K., Thiele, L., Laumanns, M. and Zitzler, E. (2005). Scalable Test Problems for Evolutionary Multiobjective Optimization, Springer, London.
[18] Denysiuk, R., Costa, L., Santo, I.E. and Matos, J.C. (2015). MOEA/PC: Multiobjective evolutionary algorithm based on polar coordinates, International Conference on Evolutionary Multi-Criterion Optimization, Guimarães, Portugal, pp. 141–155.
[19] Derrac, J., García, S., Molina, D. and Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm and Evolutionary Computation 1(1): 3–18.
[20] Dorigo, M., Maniezzo, V. and Colorni, A. (1996). Ant system: Optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics 26(1): 29–41.
[21] Eiben, A.E. and Smith, J. (2015). From evolutionary computation to the evolution of things, Nature 521(7553): 476–482.
[22] Falconer, K.J. (1986). Random Fractals, Cambridge University Press, Cambridge, pp. 559–582.
[23] Fonseca, C.M. and Fleming, P.J. (1998). Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I: A unified formulation, IEEE Transactions on Systems, Man, and Cybernetics A: Systems and Humans 28(1): 26–37.
[24] Ishibuchi, H., Doi, T. and Nojima, Y. (2006). Incorporation of scalarizing fitness functions into evolutionary multiobjective optimization algorithms, in T.P. Runarsson et al. (Eds.), Parallel Problem Solving from Nature, PPSN IX, Springer, Berlin/Heidelberg, pp. 493–502.
[25] Karaboga, D. and Akay, B. (2009). A comparative study of artificial bee colony algorithm, Applied Mathematics and Computation 214(1): 108–132.
[26] Kennedy, J. (2011). Particle swarm optimization, in C. Sammut and G.I. Webb (Eds.), Encyclopedia of Machine Learning, Springer, Berlin/Heidelberg, pp. 760–766.
[27] Li, C., Xu, S., Li, W. and Hu, L. (2012). A novel modified fly optimization algorithm for designing the self-tuning proportional integral derivative controller, Journal of Convergence Information Technology 7(16): 69–77.
[28] Li, H.-Z., Guo, S., Li, C.-J. and Sun, J.-Q. (2013). A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm, Knowledge-Based Systems 37(2): 378–387.
[29] Lin, S.-M. (2013). Analysis of service satisfaction in web auction logistics service using a combination of fruit fly optimization algorithm and general regression neural network, Neural Computing and Applications 22(3–4): 783–791.
[30] Liu, H.-L., Gu, F. and Zhang, Q. (2014). Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems, IEEE Transactions on Evolutionary Computation 18(3): 450–455.
[31] Mandelbrot, B.B. (1983). The Fractal Geometry of Nature, Macmillan, New York, NY.
[32] Mei, Y., Tang, K. and Yao, X. (2011). Decomposition-based memetic algorithm for multiobjective capacitated arc routing problem, IEEE Transactions on Evolutionary Computation 15(2): 151–165.
[33] Mellal, M.A. and Zio, E. (2016). A penalty guided stochastic fractal search approach for system reliability optimization, Reliability Engineering System Safety 152: 213–227.
[34] Menchaca-Mendez, A. and Coello, C. A.C. (2015). GD-MOEA: A new multi-objective evolutionary algorithm based on the generational distance indicator, International Conference on Evolutionary Multi-Criterion Optimization, Guimarães, Portugal, pp. 156–170.
[35] Michalewicz, Z. and Schoenauer, M. (1996). Evolutionary algorithms for constrained parameter optimization problems, Evolutionary Computation 4(1): 1–32.
[36] Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014). Grey wolf optimizer, Advances in Engineering Software 69: 46–61.
[37] Mitić, M., Vuković, N., Petrović, M. and Miljković, Z. (2015). Chaotic fruit fly optimization algorithm, Knowledge-Based Systems 89(C): 446–458.
[38] Mousavi, S.M., Alikar, N. and Niaki, S.T.A. (2016). An improved fruit fly optimization algorithm to solve the homogeneous fuzzy series-parallel redundancy allocation problem under discount-strategies, Soft Computing 20(6): 2281–2307.
[39] Niu, J., Zhong, W., Liang, Y., Luo, N. and Qian, F. (2015). Fruit fly optimization algorithm based on differential evolution and its application on gasification process operation optimization, Knowledge-Based Systems 88(C): 253–263.
[40] Pan, Q.-K., Sang, H.-Y., Duan, J.-H. and Gao, L. (2014). An improved fruit fly optimization algorithm for continuous function optimization problems, Knowledge-Based Systems 62(5): 69–83.
[41] Pan, W. (2011). A new evolutionary computation approach: Fruit fly optimization algorithm, Proceedings of the Conference on Digital Technology and Innovation Management, Taipei, Taiwan.
[42] Pan, W.-T. (2012). A new fruit fly optimization algorithm: Taking the financial distress model as an example, Knowledge-Based Systems 26(2): 69–74.
[43] Pan, W.-T. (2013). Using modified fruit fly optimisation algorithm to perform the function test and case studies, Connection Science 25(2–3): 151–160.
[44] Rafajłowicz, E. and Rafajłowicz, W. (2012). Fletcher’s filter methodology as a soft selector in evolutionary algorithms for constrained optimization, in L. Rutkowski et al. (Eds.), Swarm and Evolutionary Computation, Springer, Berlin/Heidelberg, pp. 333–341.
[45] Rafajłowicz, W. (2013). Method of handling constraints in differential evolution using Fletcher’s filter, Proceedings of the 12th International Conference on Artificial Intelligence and Soft Computing (ICAICS 2013), Zakopane, Poland, pp. 46–55.
[46] Rajabioun, R. (2011). Cuckoo optimization algorithm, Applied Soft Computing 11(8): 5508–5518.
[47] Rodríguez Villalobos, C.A. and Coello Coello, C.A. (2012). A new multi-objective evolutionary algorithm based on a performance assessment indicator, Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, Philadelphia, PA, USA, pp. 505–512.
[48] Salimi, H. (2015). Stochastic fractal search: A powerful metaheuristic algorithm, Knowledge-Based Systems 75(C): 1–18.
[49] Shan, D., Cao, G. and Dong, H. (2013). LGMS-FOA: An improved fruit fly optimization algorithm for solving optimization problems, Mathematical Problems in Engineering 2013(7): 1256–1271.
[50] Shen, L., Chen, H., Yu, Z., Kang, W., Zhang, B., Li, H., Yang, B. and Liu, D. (2016). Evolving support vector machines using fruit fly optimization for medical data classification, Knowledge-Based Systems 96(C): 61–75.
[51] Sheng, W. and Bao, Y. (2013). Fruit fly optimization algorithm based fractional order fuzzy-PID controller for electronic throttle, Nonlinear Dynamics 73(1–2): 611–619.
[52] Van Veldhuizen, D.A. and Lamont, G.B. (1998). Multiobjective evolutionary algorithm research: A history and analysis, Technical Report TR-98-03, Air Force Institute of Technology, Wright-Patterson AFB, OH.
[53] Vicsek, T. and Gould, H. (1989). Fractal growth phenomena, Computers in Physics 3(5): 108.
[54] Voss, R.F. (1991). Random fractals: Characterization and measurement, in R. Pynn and A. Skjeltrop (Eds.), Scaling Phenomena in Disordered Systems, Springer, New York, NY, pp. 1–11.
[55] Wang, L., Shi, Y. and Liu, S. (2015). An improved fruit fly optimization algorithm and its application to joint replenishment problems, Expert Systems with Applications 42(9): 4310–4323.
[56] Wang, L., Zheng, X.-l. and Wang, S.-Y. (2013). A novel binary fruit fly optimization algorithm for solving the multidimensional knapsack problem, Knowledge-Based Systems 48(2): 17–23.
[57] Wang, R., Zhang, Q. and Zhang, T. (2015). Pareto adaptive scalarising functions for decomposition based algorithms, International Conference on Evolutionary Multi-Criterion Optimization, Guimarães, Portugal, pp. 248–262.
[58] Wang, Y.-N.,Wu, L.-H. and Yuan, X.-F. (2010). Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure, Soft Computing 14(3): 193–209.
[59] Witten, T.A. and Sander, L.M. (1983). Diffusion-limited aggregation, Physical Review B 27(9): 5686.
[60] Wu, L., Zuo, C. and Zhang, H. (2015a). A cloud model based fruit fly optimization algorithm, Knowledge-Based Systems 89(C): 603–617.
[61] Wu, L., Zuo, C., Zhang, H. and Liu, Z. (2015b). Bimodal fruit fly optimization algorithm based on cloud model learning, Soft Computing 21(7): 1877–1893.
[62] Yamaguchi, M., Hata,M. and Kigami, J. (1997). Mathematics of Fractals, American Mathematical Society, New York, NY.
[63] Yang, X.-S. (2010). Firefly algorithm, stochastic test functions and design optimisation, International Journal of Bio-Inspired Computation 2(2): 78–84.
[64] Yuan, X., Dai, X., Zhao, J. and He, Q. (2014). On a novel multi-swarm fruit fly optimization algorithm and its application, Applied Mathematics and Computation 233(3): 260–271.
[65] Yuan, X., Liu, Y., Xiang, Y. and Yan, X. (2015). Parameter identification of BIPT system using chaotic-enhanced fruit fly optimization algorithm, Applied Mathematics and Computation 268(C): 1267–1281.
[66] Zhang, Q. and Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Transactions on Evolutionary Computation 11(6): 712–731.
[67] Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P.N. and Zhang, Q. (2011). Multiobjective evolutionary algorithms: A survey of the state of the art, Swarm and Evolutionary Computation 1(1): 32–49.
[68] Zitzler, E., Deb, K. and Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: Empirical results, Evolutionary Computation 8(2): 173–195.
[69] Zitzler, E. and Künzli, S. (2004). Indicator-based selection in multiobjective search, International Conference on Parallel Problem Solving from Nature, Birmingham, UK, pp. 832–842.
[70] Zitzler, E., Laumanns, M. and Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm, Eurogen 3242: 95–100.