Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2017_27_2_a12, author = {Rybarczyk, A. and Hertz, A. and Kasprzak, M. and Blazewicz, J.}, title = {Tabu search for the {RNA} partial degradation problem}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {401--415}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a12/} }
TY - JOUR AU - Rybarczyk, A. AU - Hertz, A. AU - Kasprzak, M. AU - Blazewicz, J. TI - Tabu search for the RNA partial degradation problem JO - International Journal of Applied Mathematics and Computer Science PY - 2017 SP - 401 EP - 415 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a12/ LA - en ID - IJAMCS_2017_27_2_a12 ER -
%0 Journal Article %A Rybarczyk, A. %A Hertz, A. %A Kasprzak, M. %A Blazewicz, J. %T Tabu search for the RNA partial degradation problem %J International Journal of Applied Mathematics and Computer Science %D 2017 %P 401-415 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a12/ %G en %F IJAMCS_2017_27_2_a12
Rybarczyk, A.; Hertz, A.; Kasprzak, M.; Blazewicz, J. Tabu search for the RNA partial degradation problem. International Journal of Applied Mathematics and Computer Science, Tome 27 (2017) no. 2, pp. 401-415. http://geodesic.mathdoc.fr/item/IJAMCS_2017_27_2_a12/
[1] Adachi, H. and Yu, Y. (2014). Purification of radiolabeled RNA products using denaturing gel electrophoresis, Current Protocols in Molecular Biology 105: 4.20.1–4.20.13, DOI: 10.1002/0471142727.mb0420s105.
[2] Bibillo, A., Figlerowicz, M. and Kierzek, R. (1999). The non-enzymatic hydrolysis of oligoribonucleotides. VI: The role of biogenic polyamines, Nucleic Acids Research 27(19): 3931–3937, DOI: 10.1093/nar/27.19.3931.
[3] Bibillo, A., Figlerowicz, M., Ziomek, K. and Kierzek, R. (2000). The nonenzymatic hydrolysis of oligoribonucleotides. VII: Structural elements affecting hydrolysis, Nucleosides Nucleotides Nucleic Acids 19(5–6): 977–994, DOI: 10.1080/15257770008033037.
[4] Bilski, A. and Wojciechowski, J. (2016). Automatic parametric fault detection in complex analog systems based on a method of minimum node selection, International Journal of Applied Mathematics and Computer Science 26(3): 655–668, DOI: 10.1515/amcs-2016-0045.
[5] Blazewicz, J., Figlerowicz, M., Kasprzak, M., Nowacka, M. and Rybarczyk, A. (2011). RNA partial degradation problem: Motivation, complexity, algorithm, Journal of Computational Biology 18(6): 821–834, DOI: 10.1089/cmb.2010.0153.
[6] Blazewicz, J., Formanowicz, P., Guinand, F. and Kasprzak, M. (2002). A heuristic managing errors for DNA sequencing, Bioinformatics 18(5): 652–660, DOI: 10.1093/bioinformatics/18.5.652.
[7] Blazewicz, J., Formanowicz, P., Kasprzak, M., Jaroszewski, M. and Markiewicz, W. (2001). Construction of DNA restriction maps based on a simplified experiment, Bioinformatics 17(5): 398–404, DOI: 10.1093/bioinformatics/17.5.398.
[8] Blazewicz, J., Formanowicz, P., Kasprzak, M., Markiewicz, W. and Weglarz, J. (1999). DNA sequencing with positive and negative errors, Journal of Computational Biology 6(1): 113–123, DOI: 10.1089/ cmb.1999.6.113.
[9] Blazewicz, J., Glover, F. and Kasprzak, M. (2005). Evolutionary approaches to DNA sequencing with errors, Annals of Operations Research 138(67): 67–78, DOI: 10.1007/s10479-005-2445-2.
[10] Blazewicz, J. and Kasprzak, M. (2012). Complexity issues in computational biology, Fundamenta Informaticae 118(4): 385–401, DOI: 10.3233/FI-2012-721.
[11] Chanfreau, G. (2015). Two degrading decades for RNA, RNA 21(4): 584–585, DOI: 10.1261/rna.050146.115.
[12] Deutscher, M. (2003). Degradation of stable RNA in bacteria, Journal of Biological Chemistry 278(46): 45041–45044, DOI: 10.1074/jbc.R300031200.
[13] Dutkiewicz, M. and Ciesiolka, J. (2005). Structural characterization of the highly conserved 98-base sequence at the 3’ end of HCV RNA genome and the complementary sequence located at the 5’ end of the replicative viral strand, Nucleic Acids Research 33(2): 693–703, DOI: 10.1093/nar/gki218.
[14] Ender, C., Krek, A., Friedlander, M., Beitzinger, M., Weinmann, L., Chen, W., Pfeffer, S., Rajewsky, N. and Meister, G. (2008). A human snoRNA with microRNA-like functions, Molecular Cell 32(4): 519–528, DOI: 10.1016/j.molcel.2008.10.017.
[15] Garey, M. and Johnson, D. (1979). Computers and Intractability. A Guide to the Theory of NP-Completeness,W.H. Freeman Co., New York, NY.
[16] Glover, F. (1990). Tabu search: A tutorial, Interfaces 20: 74–94, DOI: 10.1287/inte.20.4.74.
[17] Glover, F., Kelly, J. and Laguna, M. (1995). Genetic algorithms and tabu search: Hybrids for optimization, Computers and Operations Research 22(1): 111–134, DOI: 10.1016/0305-0548(93)E0023-M.
[18] Glover, F. and Laguna, M. (1997). Tabu Search, Kluwer Academic Publishers, Norwell, MA.
[19] Haussecker, D., Huang, Y., Lau, A., Parameswaran, P., Fire, A. and Kay, M. (2010). Human tRNA-derived small RNAs in the global regulation of RNA silencing, RNA 16(4): 673–695, DOI: 10.1261/rna.2000810.
[20] Jackowiak, P., Nowacka, M., Strozycki, P. and Figlerowicz, M. (2011). RNA degradome—ITS biogenesis and functions, Nucleic Acids Research 39(17): 7361–7370, DOI: 10.1093/nar/gkr450.
[21] Jankowiak, K., Lesicka, J., Pacak, A., Rybarczyk, A. And Szweykowska-Kulinska, Z. (2004). A comparison of group II introns of plastid tRNALys UUU genes encoding maturase protein, Cellular and Molecular Biology Letters 9(2): 239–251.
[22] Jankowiak, K., Rybarczyk, A., Wyatt, R., Odrzykoski, I., Pacak, A. and Szweykowska-Kulinska, Z. (2005). Organellar inheritance in the allopolyploid moss rhizomnium pseudopunctatum, Taxon 54(2): 383–388, DOI: 10.2307/25065367.
[23] Kierzek, R. (1992). Hydrolysis of oligoribonucleotides: influence of sequence and length, Nucleic Acids Research 20(19): 5073–5077, DOI: 10.1093/nar/20.19.5073.
[24] Kierzek, R. (2001). Nonenzymatic cleavage of oligoribonucleotides, Methods in Enzymology 341: 657–675.
[25] Kuppusamy, L. and Mahendran, A. (2016). Modelling DNA and RNA secondary structures using matrix insertion–deletion systems, International Journal of Applied Mathematics and Computer Science 26(1): 245–258, DOI: 10.1515/amcs-2016-0017.
[26] Nowacka, M., Jackowiak, P., Rybarczyk, A., Magacz, T., Strozycki, P., Barciszewski, J. and Figlerowicz, M. (2012). 2D-PAGE as an effective method of RNA degradome analysis, Molecular Biology Reports 39(1): 139–146, DOI: 10.1007/s11033-011-0718-1.
[27] Podkowinski, J., Zmienko, A., Florek, B., Wojciechowski, P., Rybarczyk, A., Wrzesinski, J., Ciesiolka, J., Blazewicz, J., Kondorosi, A., Crespi, M. and Legocki, A. (2009). Translational and structural analysis of the shortest legume ENOD40 gene in Lupinus luteus, Acta Biochimica Polonica 56(1): 89–102.
[28] Rybarczyk, A., Jackowiak, P., Figlerowicz, M. and Blazewicz, J. (2016). Computational prediction of nonenzymatic RNA degradation patterns, Acta Biochimica Polonica 63(4): 745–751, DOI: 10.18388/abp.2016 1331.
[29] Rybarczyk, A., Szostak, N., Antczak, M., Zok, T., Popenda, M., Adamiak, R., Blazewicz, J. and Szachniuk, M. (2015). New in silico approach to assessing RNA secondary structures with non-canonical base pairs, BMC Bioinformatics 16: 276, DOI: 10.1186/s12859-015-0718-6.
[30] Szostak, N., Royo, F., Rybarczyk, A., Szachniuk, M., Blazewicz, J., del Sol, A. and Falcon-Perez, J. (2014). Sorting signal targeting mRNA into hepatic extracellular vesicles, RNA Biology 11(7): 836–844, DOI: 10.4161/rna.29305.
[31] Yao, B., Hu, P., Zhang, M. and Jin, M. (2014). A support vector machine with the tabu search algorithm for freeway incident detection, International Journal of Applied Mathematics and Computer Science 24(2): 397–404, DOI: 10.2478/amcs-2014-0030.
[32] Zhang, S., Sun, L. and Kragler, F. (2009). The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation, Plant Physiology 150(1): 378–387, DOI: 10.1104/pp.108.134767.
[33] Zok, T., Antczak, M., Riedel, M., Nebel, D., Villmann, T., Lukasiak, P., Blazewicz, J. and Szachniuk, M. (2015). Building the library of RNA 3D nucleotide conformations using the clustering approach, International Journal of Applied Mathematics and Computer Science 25(3): 689–700, DOI: 10.1515/amcs-2015-0050.